
This document is originally distributed by AVRfreaks.net, and may be distributed, reproduced, and modified
without restrictions. Updates and additional design notes can be found at: www.AVRfreaks.net

DESIGN NOTE
AUTHOR:
KEYWORDS: #033ADC, DAC, PULL-UP

VASILIOS THEODOROU
DAC Utilizing ADC

Introduction This design note describes a way to produce an analog voltage which is proportional to
an 10-bit digital word. In other words, the design note describes how we can create a
Digital-to-Analog Converter by utilizing the Analog-to-Digital Converter as well as some
other hardware peripherals which are already present in several members of the AVR®

family.

Overview As it is commonly known the AVR microcontrollers does not include any kind of inte-
grated DAC. However there are many ways to build DACs using vital resources of the
micro, i.e., a free output port or a PWM channel on the accompanying timer. Obviously
the DAC should be attended of a kind of software which is absolutely necessary for the
proper operation.

Clearly DAC can be implemented only in those devices which have an internal ADC
(ATtiny15, AT90S4433, AT90S8535…). For the operation of the DAC only an external
RC network is required. Typical values for the components of the net are 10K and
100 nF for the resistor and the capacitor respectively. The unconnected resistor lead
must be connected to an unused I/O line (in our code PORTA.0). The common lead of
the resistor and the capacitor which is the VOUT of the DAC must be connected simulta-
neously to an ADC input (in our code PORTA.1/ADC1). The remaining capacitor lead
goes to ground.

The software operates the ADC in Free Running mode. Thus the valuable hardware
resources such as Timer, PWM and the comparator are not involved in the DAC opera-
tion. Only the ADC interrupt complete vector is needed which in many cases is not a
huge trade-off. While the Analog-to-Digital conversion is complete the corresponding
interrupt is invoked and the interrupt service routine is executed. In that routine the 10-
bit result is compared to the desired output voltage. In case that the output voltage is
smaller than the desired the internal pull-up of PORTA.0 pin is activated and the capaci-
tor is charged via the resistor. The pull-up is deactivated in case the desired voltage is
achieved or the output voltage is bigger than those expected. In the second case the
capacitor is discharged gradually via the resistor.

The output ripple can be trimmed to acceptable levels for a specific application. How-
ever note that the above described DAC is not ideal. Moreover the ripple varies in
relation to the desired output voltage due to the non linear nature of the capacitor
charge. At any case the ripple can be eliminated by setting the ADC prescaler to an
appropriate value.
1www.AVRfreaks.net Design Note #033 – Date: 06/02

Figure 1. RC Network

Code ;--

; Author:Robotechnics Laboratories/Vasilios Theodorou

; Project name:DAC utilizing ADC

; Last modification date: 14/5/2002

;--

.include "c:\microcon\avrtools\appnotes\8535def.inc"

;--

.def temp =r16

.def temp1 =r17

.def temp2 =r18

.equ DAC_val =750

;--

.cseg

.org 0x00

 rjmp start

.org ADCCaddr

rjmp ADC_INT

;--

start: ;Initialize Stack Pointer

ldi temp,low(RAMEND)

out SPL,temp

ldi temp,high(RAMEND)

out SPH,temp

ldi temp,0

out porta,temp

ldi temp,0b00000000 ;Porta as input

out ddra,temp

;ADC initialization

ldi temp,0b00000001

out ADMUX,temp

ldi temp,0b10101000

out ADCSR,temp

100nF

10 K

PORTA.1/ADC1

PORTA.0

AVR

VOUT
www.AVRfreaks.net2 Design Note #033 – Date: 06/02

sei ; Global interrupt enable

sbi ADCSR,ADSC

main:

rjmp main

;--

;ADC complete interrupt service routine

ADC_INT:

in temp1,ADCL

in temp2,ADCH

subi temp1,low(DAC_val)

sbci temp2,high(DAC_val)

brpl ad_lo

sbi PORTA,0

rjmp ad_end

ad_lo:

cbi PORTA,0

ad_end:

reti

;-------------------------------
www.AVRfreaks.net 3Design Note #033 – Date: 06/02

	Introduction
	Overview
	Code

