Polled IO versus Interrupt Driven 10

* Polled Input/Output (I0) — processor continually
checks IO device to see 1f 1t 1s ready for data
transfer

— Inefficient, processor wastes time checking for ready
condition

— Either checks too often or not often enough
 Interrupt Driven IO — IO device interrupts
processor when 1t 1s ready for data transfer

— Processor can be doing other tasks while waiting for
last data transfer to complete — very efficient.

— All IO 1n modern computers 1s interrupt driven.

V0.9

from Receive port */ that the processor is

unsigned char getch () see if data is available.

{

Polled 1O: getch()

continually polling to

unsigned char c;
/* wait until character is received */

while (!RCIF); Time spent checking for data
;e:uif(ff{ availability is WASTED time.

' In some applications this
time can be spent doing
something else.

V0.9 2

Interrupt-driven 10 on the PIC18

Normal Program flow Interrupt Service Routine (ISR)

W, STATUS. BSR saved in
shadow regs, return address saved

main() { —> interrupt my isr () {

instrl on stack, interrupts of same priority ISR responsibilities:

instr2 are masked, PC = interrupt vector o

instr3 i (a) save processor conlext

..... / (b) service interrupl

instrN [nterrupt oceurs } (¢) restore processor context
Restore W, STATUS, BSR from shadow

ingtri+l regs, PC = return address, unmask «—— retfie

instrN+2 . .. }
interrupts of same priority

oooooo

,,,,,, ISR called by interrupt generation logic, main () code does not call ISR explictly.

The normal program flow (main) 1s referred to as the
foreground code. The interrupt service routine (ISR) 1s

referred to as the background code.
V0.9 3

Copyright Thomson/Delmar Learning 2005. All Rights Reserved.

PIC18Fxx2 Interrupts
(Chap 8 of datasheet)

* Many PIC18Fxx2 interrupt sources
— When character is received on serial port
— When character is finished transmitting on serial port
— When A/D conversion 1s finished
— When external pin RBO is pulled low
— Many more

 Interrupt Enable, Flag bits

— Each interrupt source has an ENABLE bit that allows an interrupt
to be generated if interrupt condition 1s met. By default, interrupts
are NOT enabled.

— Each interrupt source also has a FLLAG bit that indicates if the
interrupt has occurred.

— Each interrupt source also has a PRIORITY bit that allows it to be
assigned a low or high priority.

V0.9

TMROIF
TMROIE
TMROIP

Interrupt Logic i] >
a d =D
T\/l ROIF — E% [NTO[F:D_
T\A RO I E — (no priority bit for INT0)
TMROIP — 5
7/

Peripheral Interrupt
Priority Bit | 3
TMROIF : flag DJ D=1
. ¢ 9 o . 1 IPEN
bit, ‘1’ indicates RCIP—] i 2 High Priority

* Other F —]
event 1s true. eripheral l;;‘F_ 'PE“
Interrupts 221] o High T 9 Interrupt

Priority

Wake-up if in
SLEEP mode

—) —

Interrupt to CPU
Vector to
location 0x0008

@ g5

GIEH/GIE

———mmmm— - - -4

TMROIE : enable bit, Peripheral Inerrupt priorty |

Flag Bit |

mUSt be ¢ 1 ’ for Peripheral Interrupt

Enable Bit~ |

2/

Peripheral Interrupt

interrupt to be priort Bit
generated. RCIr

RCIE 1 TMROIF
RCIP i TMROIE
' TMROIP

S periphera {@
TMROIP : priority bit, merrupts {221 RoI:
‘1’ high priority, ‘0’ T @

INT1IP

Interrupt to CPU
Vector to

r
1
1
1
1
1
1 location 0x0018

—

GIEL/PEIE
GIEH/GIE

Figure redrawn by author from PIC18Fxx2

. . datasheet (DS395648), Microchip Technology Inc.
low priority. INToIE .
INT21IP Low Prlorlty

Copyright Thomson/Delmar Learning 2005. All Rights Reserved.

V0.9 Interrupt

Interrupt Priorities

* When an interrupt occurs, processor finishes
current instruction, and calls an Interrupt Service
Routine (ISR)

— High priority interrupt routine at location 0x0008

— Low priority interrupt routine at location 0x0018

— An interrupt service routine should determine source of
interrupt, and service it (1.e, do the interrupt function).

* A high priority interrupt can interrupt the ISR of a
low priority interrupt, but not vice versa

— A high priority interrupt cannot interrupt (should not)
interrupt itself.

V0.9

Interrupt Priorities (cont)

 Interrupt priorities can be disabled by setting the
IPEN bit (RCON[7]) to ‘0’.

— All priorities are classified as high priority (interrupt
jumps to 0x0008).

* This 1s the mode that will be used for lab and class

— This 1s compatible with the PIC16 family of micros

— We have no need for priorities in our lab exercises.

V0.9

GIE, PEIE

Global interrupt enable (GIE, INTCON][7]) can be used to
disable all interrupts
— By default, all interrupts disabled

Peripheral interrupt enable (PEIE, INTCON[6]) can be
used to disable all peripheral interrupts
— By default, all peripheral interrupts disabled
— Peripheral interrupts are those associated with peripheral
subsystems such as the USART, the Analog/Digital converter,
timers, etc.
If priorities are enabled,
— the GIE bit is known as GIEH (GIE for high priority interrupts)
— PEIE bit is known as GIEL (GIE for low priority interrupts).

V0.9

When an enabled interrupt occurs...

GIE bit is CLEARED - this disables further
interrupts (do not want to get caught in an infinite
loop!)
— If priorities are enabled, either GIEH or GIEL 1s
cleared, depending on interrupt priority

Return address 1s pushed on the stack
W, STATUS, BSR saved in shadow registers

Jump to 0x0008 (high priority) or 0x0018 low
priority interrupt is done

V0.9

ISR Responsibilities

Must save the processor context (W register, and Status
Register, and BSR if necessary)

— Ifnot saved, normal program execution will become unpredictable
since interrupt can happen at anytime

— If ISR uses registers such as FSRx or PRODH/PRODL, must save

Must determine the source of the interrupt
— If multiple interrupts are enabled, check flag bit status

Must service the interrupt (clear interrupt flag)

— E.g., for received character interrupt, read the RCREG, this clears the
RCIF bit automatically.

Restore processor context

Execute RETFIE (return from interrupt)
— Sets GIE to enable interrupts, reads PC from stack

V0.9 10

Shadow Registers

An 1mterrupt can occur at any point in the execution of
program.

The ISR will, at a minimum, change W and STATUS, and
probably the BSR

— These must be saved on ISR entry, and restored on ISR exit

Shadow registers were added with the PIC18
— W, STATUS, and BSR are registers are saved automatically on
interrupt
— Will be restored on exit by the RETFIE (return from interrupt) if
the ‘s’ bit is set in the instruction word - the PICC18 C compiler
uses ‘RETFIE 1’ which restores the W, STATUS, BSR on return.
Shadow registers can only be used with high priority
interrupts

— If low priority interrupt uses shadow registers, then can be
overwritten by high priority interrupt

V0.9 11

CBLOCK 0x7D
w_temp, status temp, bsr temp

endc
org 0x008
goto isr high priority space for w, status, bsr
org 0x0018
gOtg oiff—low—p riority high priority ISR can use
or > S 4
isr highipriority / shadow registers (fast
" ;;; ISR high priority code stack)

retfie 1 ;; use shadow reg

isr low priority

ISR Assembly

movwf w_temp ; context
movEff STATUS, status_temp — —
movEf BSR, bsr temp «__ | low priority must explicitly save
::....ISR CODE the processor context
movff bsr temp,bsr ; restore context

<
movi w_temp,w restore context, do not use
movff status temp, STATUS .] ,
retfie - shadow registers on ‘retfie

V0.9

12

PICIS ISR in C

Use volatile qualifier for any variables

(_ - ® = .
volatile| unsigned int got char flag; IﬂﬂdlﬁedRMHhHIISRq

volatile unsigned char received char; hotifies compiler that variable can be

modified between accesses.

// interrupt service routine
void interrupt ke interrupt qualifier for function notifies

pic_isr(void) the compiler that this function is an
{ ISR (high priority assumed).

// see if this interrupt was

// generated by a receive character

it (RCIF) | , _ [f receive character interrupt,
// reading RCREG clears interrupt bit .
read character, save it, set flag

received char = RCREG; . i
got char flag = 1; to signal main () that interrupt

} \ occurred
}
Do not have to clear RCIF \

as 1t 1s cleared automatically
by reading RCREG.

Read character, set
semaphore got_char_flag
for main() function

Copyright Thomson/Delmar Learning 2005. All Rights Reserved. V0.9 13

Enabling Interrupts in C

// code for serial port setup not shown
// enable interrupts
IPEN = O; // disable priorities IPEN = RCON (7)
RCIE = 1; // enable receive int, RCIE = PIE1l (5)
PEIE = 1; // enable peripheral intr, PEIE = INTCON (6)
GIE = 1; // enable global intr, GIE = INTCON(7)

Set by interrupt service
while (1) { routine — this 1s a
// wait for interrupt semaphore.

while ('got char flag);
c = received char: «— | Getcharacter read by
got char flag =0; // clear flag |Interrupt service

c++; // increment Char routine
putch (c¢); // send the char

V0.9 14

What 1s a semaphore?

The main() code (1.e. foreground code) must be signaled
when an interrupt action has occurred.

The isr() code (i.e, background code) must perform the 10
action that 1s caused by the interrupt. After servicing the
10, it must signal the main() code via some variable to
indicate that the interrupt occurred.

A variable used by an ISR to signal to main() code that an
interrupt has occurred 1s called a semaphore.

V0.9

15

S000000...when are interrupts useful?

Previous example simply illustrated the use of interrupts for
reading serial data. Interrupt usage was not really needed since

main routine just waited for data to arrive so no advantage over
polled IO.

Interrupts for serial 10 useful when cannot poll serial port often
enough!

i Get serial data

! .
Do calculation New serial data arrives, if
I > | not using ISR to save data
Output result in buffer, will miss it!!
¢ _

V0.9 16

doroot.c

Read decimal number

in ASCII format from
serial port New data can arrive. Current

i ISR only has room to save

—~ | ONE character. Depending

Calculate int
alculate mteger on baud rate, can have

square root

. |overrun error (input FIFO fills

0 ! 1 up before we read data
utpqt result to again).
serial port _J
¢ Copyright Thomson/Delmar Learning 2005. All Rights Reserved.

'The square root of ?? is ??'
ASCII result stream main(){ PIC18F242

While the result is printing, more data is being sent, and the data is lost unless buffered.
,,f
‘ 4 B — while(1) {
o // read ASCII-decimal number
R5232 Senal link // compute square root

é |::> // print square root

12T 14T 1Q1T 11g" 19K1T 13410 v
2','4','9'",'16",'25"','36"', ... s 17

ASCII-decimal input stream

Data lost when no buffering 1s done

Cut and paste these values

No buffering. «<— into terminal
Hit any key to start... window to simulate
Square root of 4 1s: 2.000000 continuous input stream

Square root of 9 1s: 3.000000
Square root of 16 1s: 4.000000

0 «— scanf () library function hangs when USART overrun
occurs because data is no longer reaching RCREG

USART overrun occurs, application hangs.

Copyright Thomson/Delmar Learning 2005. All Rights Reserved.

V0.9

O =

16

36
49
64
81
100

18

FIFO Buffering of Data for Interrupt 10

* A circular buffer 1s most often used to handle
interrupt driven INPUT.

A circular buffer requires the following pointers
— base address of memory buffer
— head index (head pointer)
— tail index (tail pointer)
— size of buffer

A circular buffer 1s simply another name for a
FIFO (First-In-First-Out) buffer.

— The name circular buffer helps to visualize the
wraparound conditon

V0.9 19

Circular buffer, 8 locations long

When buffer is empty, head = tail index

head —> LY <« tail
2222

IYeidls

IYeidls

IYeidls

IYeidls

IYeidls

IYeidls

V0.9

Circular buffer, write operation

Interrupt service routine places items in memory buffer by
incrementing head index, then storing value

write a value write a 2% value
22? | < tail 222 |« tail
head - | dataA dataA
LTy head »> | dataB
2229 2229
2229 2229
2229 2229
2229 2229
2229 2229

V0.9 21

Circular buffer, read operation

Input function occasionally checks to see 1f head not equal to
tail, if true, then read value by incrementing tail, then reading
memory.

read dataA value read dataB value
?22? ?22?
dataA | « tail dataA
head —» | dataB head —» | dataB | < tail
2?°2? 222?
2?°2? ;;;;
2?°2? ;;;;
2?°2? ;;;;
o

V0.9 22

Circular buffer, wraparound

when head pointer gets to end of buffer, set back to top of
buffer (wraparound)

head at end of buffer

head —

s

dataA

dataB

dataC

dataD

datakE

dataF

dataG

<« tail

V0.9

head at end of buffer

head —

dataH

dataA

dataB

dataC

dataD

datakE

dataF

dataG

<« tail

23

Circular buffer, buffer FULL

buffer FULL occurs if interrupt service routines increments
head pointer to place new data, and head = tail!!!!

near overflow

head —

dataH

datal

dataB

dataC

dataD

datakE

dataF

dataG

buffer FULL
dataH
datal
<« tail head —»> | datalJ
. / dataC

Function
taking data out gatan)
of buffer datak
thinks buffer 1s dataF
empty!!!! dataG

V0.9

<« tail

24

How to pick size of circular buffer?

« Must be big enough so that buffer full condition
never occurs

* Routine that 1s taking data out of buffer must
check 1t often enough to ensure that buffer full
condition does not occur.

— If buffer fills up because not checking often enough,
then increase the size of the buffer

— No matter how large buffer 1s, must periodically read
the data.

« Buffer must be big enough so that bursts of data
into bufter does not cause buffer full condition.

V0.9

25

ISR for Interrupt Driven Serial 10

#define BUFSIZE 2 triggered when
unsigned char ibuf[BUFSIZE]; serial data arrives.
unsigned char head, tail; Qave in buffer

void interrupt pic isr(void) {

// see if this interrupt was generated by
// receive character
if (RCIF) { // check RCIF bit
head = head + 1;
if (head == BUFMAX) head = 0;
// reading this register clears interrupt bit
ibuf[head] = RCREG;

}
Increasing buffer size will increase amount of time that

main{} code can wait before reading input buff.
V0.9

26

New getch() for Interrupt Receive

Wait for ISR to trigger
and save data in buffer.
unsigned char c; /Combination of head/tail

while (head == tail) { is the semaphore!!!
asm("clrwdt") ;

}i Must wrap tail pointer
tail = tail + 1; / if at end of buffer.
if (tail == BUFMAX) tail = O;

c = ibuf[tail];
return (c) ; \ Read data from buffer

unsigned char getch (void) {

V0.9 27

INTO/INT1/INT2 Interrupts

The RBO/RB1/RB2 inputs can generate an
interrupt on either a rising or falling edge.

r

C

These are called the INTO/INT1/INT2 interrupts.
T'he INTEDGO/INTEDGI/INTEDG?2 bits

etermine the active edge

— ‘0’ for falling edge, ‘1’ for rising edge

These interrupts can wake the processor from
sleep mode.

V0.9

28

Interrupt Driven LED/Switch 10

— | implement this with

RBO . .
(StaﬂlLED_jL— interrupt driven 10

blinking

4
| | PIC

— pullup is enabled
0 297 O——RB7 of
C: reeze LE[) — g
on
--
%d" , | |
J | RB0

G reeze LED
off

J' Copyright Thomson/Delmar Learning 2005. All Rights Reserved.

V0.9 29

##define START STATE O

PIC

#define BLINK STATE 1 47’%_ RB4 PORTB weak
volatile unsigned char state, led blink;— RBO

volatile unsigned char led on, int flag; Vdd E

o

void interrupt pic isr(void) { O——RB7
if (INTOIF) { :i_

ISR DelayMs (30); //debounce —_—

INTOIF = 0; int flag = 1;
switch(state) {
case START STATE:
state = BLINK STATE; led blink = 1;
break;
case BLINK STATE:
if ('RB7) {
led blink = 0; led on = 1;
state = ON_STATEw _ "\
) led blink, led on tell main()

break;
case ON sTaTe: how to control LED

led on = 0; state = START STATE;
break;
}

} print state for debugging

} —

void print debug(void) {

printf ("State: %d, Led on: %d, led blink: %d"
state,led on,led blink); pcrlf();

A .

l RBO
Start LED
blinking
) . |

| RB0

0
Freeze LED
on
.

|
. LRBO

' Freeze LE[?

—

off

} Copyright Thomson/Delmar Learning 2005. All Rights Reserved.
main (void) {

w

—

main (void) { | T T
serial init(95,1);// 19200 in HSPLL mode, crystal = 7.3728 MHz
RBPU = 0; // weak pullups enabled
// set RBO for input, rising edge interrupt initially
TRISB = OxEF; //RB4 is output, others inputs | Configure ports, INTO is falling
INTEDGO = 0; ff falling edge } edge trigerred
RB4 = 0; // turn LED off
printf ("INTO0 FSM started (with debug) .") ;pcrlf(); Enabkﬁﬂ&ﬂTqu
// enable interrupts ef’###
IPEN = 0; INTOIF = 0; INTOIE = 1; PEIE = 1; GIE = 1;
print debug() ;

while (1) {¢ Loop is free-running, not synchronized to interrupt
if (int flag) ({
print debug(); int_flag = 0; }[)ebug
}

if (led blink) { 1
{/ /LED toggle, delay Update LED based on 1ed blink and
if (LATB4) RB4 = 0; else RB4 = 1;) h -

DelayMs (250) ; DelayMs (250) : led_on SCMApNOTES

})

else if (led on) RB4 = 1;

else RB4 = 0;

], Copyright Thomson/Delmar Learning 2005. All Rights Reserved.

Semaphores led blink, led on control LED state in main()
loop.

V0.9 31

#defi OFF STATE 0 .
foocine ore_smoe, o s INITEITUPE Dr1ven

#define BLINK STATE 2 Z ullup is enabled
#define STOP STATE 3 — v RBO putiup
vdd Iy
volatile unsigned char state, led blink; RB7 P_
volatile unsigned char led on, int flag; :E i
void interrupt pic_isr(void) { N
if (INTOIF) { @

INTOIF = 0; int flag = 1;
switch (state) {
case OFF_STATE:
// exited rising edge
state = ON_STATE;
led on = 1; // turn on led
break;
case ON_STATE:
// exited rising edge
if (RB7) {
// change to falling edge trigger
INTEDGO = 0O;
led blink = 1; state = BLINK STATE;

RBO
Exit on

Exit on

lelse {

led on = 0; state = OFF_STATE; i
}break ; .

case BLINK STATE: Falling edge RBY

// exited on falling edge
led blink = O;led on = 1;
// change to rising edge trigger
INTEDGO = 1; state = STOP_STATE;
break;
case STOP_STATE:
// exited on rising edge
led on = 0;state = OFF_STATE;
break;
}//end switch
}// end if (INTOIF)
}//end

Press & Release

RBO |

Press & Release

Remainder of code not shown, same as previous example except INTO
initialized for rising edge trigerred interrupt within main ().

Copyright Thomson/Delmar Learning 2005. All Rights Reserved. V0.9

LED/Switch 10,

example #2

Use Interrupt service
routine to watch for
falling/rising edges on
RBO input indicating a
button press!!!!

Use variables led on,
led blink to tell main()

that the LED should be
turned on or blink.

Change active
interrupt edge in ISR

32

void interrupt pic isr(void) {
if (INTOIF) { Initialize RBO so—y |

INTOIF = 0; int flag = 1; .,. . .

switch (state) {_ lnltlally TISIHg- y T RBO T

case OFF_STATE: edge triggered CT‘“‘“ LED) Exit on
// exited rising edge ON
state = ON STATE; Press & Release
led on = 1; // turn on led | ~ |
break;) ~

case ON_STATE: Active edge RBOT .
// exited rising edge changed!!! 0 Exit on N\ active
if (RB7) {

interrupt
// change to fa¥Ting edge trigger] Press & Relgase p

INTEDGO = 0;

;E S Blink LED edge 1S

. ¥ 11

led blink = 1; state = BLINK STATE;

e : changed
led on = 0; state = OFF STATE; when go
}break; 7 from ON to
case BLINK STATE: > Falling edge L RBO BLINK
// exited on falling edge r TED J
led blink = 0;led on = 1; (reeze) state
// change to rising edge trigger on
INTEDGO = 1; state = STOP STATE; , @
break ; J | |
case STOP_STATE: —

// exited on rising edge o ~ TED RBO
led on = 0;state = OFF STATE; (reeze)
break ; off
}//end switch _ > ' .
} f ;"’ end if (INT UIF) Copyright Thomson/Delmar Learning 2005. All Rights Reserved. 33

}//end |

main() For Example #2

Basically the same as for example #1 except INTO 1s
configured for rising edge interrupt initially.

V0.9

34

What do you have to know?

How interrupts behave on the PIC18 for serial 10
Function of PEIE, GIE bits

Responsibilities of ISR

Assembly language structure of ISR 1n PIC18
ISR in PICC C

Circular buffer operation

Interrupt-driven LED/Switch 10

V0.9

35

	Polled IO versus Interrupt Driven IO
	Polled IO: getch()
	Interrupt-driven IO on the PIC18
	PIC18Fxx2 Interrupts (Chap 8 of datasheet)
	Interrupt Priorities
	Interrupt Priorities (cont)
	GIE, PEIE
	When an enabled interrupt occurs...
	ISR Responsibilities
	Shadow Registers
	ISR Assembly
	PIC18 ISR in C
	Enabling Interrupts in C
	What is a semaphore?
	Soooooo…when are interrupts useful?
	doroot.c
	Data lost when no buffering is done
	FIFO Buffering of Data for Interrupt IO
	Circular buffer, 8 locations long
	Circular buffer, write operation
	Circular buffer, read operation
	Circular buffer, wraparound
	Circular buffer, buffer FULL
	How to pick size of circular buffer?
	ISR for Interrupt Driven Serial IO
	New getch() for Interrupt Receive
	INT0/INT1/INT2 Interrupts
	Interrupt Driven LED/Switch IO
	Interrupt Driven LED/Switch IO, example #2
	main() For Example #2
	What do you have to know?

