
V 0.9 1

Polled IO versus Interrupt Driven IO

• Polled Input/Output (IO) – processor continually
checks IO device to see if it is ready for data
transfer
– Inefficient, processor wastes time checking for ready

condition
– Either checks too often or not often enough

• Interrupt Driven IO – IO device interrupts
processor when it is ready for data transfer
– Processor can be doing other tasks while waiting for

last data transfer to complete – very efficient.
– All IO in modern computers is interrupt driven.

V 0.9 2

Polled IO: getch()

/* return 8 bit char
from Receive port */

unsigned char getch ()
{

unsigned char c;
/* wait until character is received */

while (!RCIF);
c = RCREG;
return(c);

}

This is polled IO. Note
that the processor is
continually polling to
see if data is available.

Time spent checking for data
availability is WASTED time.
In some applications this
time can be spent doing
something else.

V 0.9 3

Interrupt-driven IO on the PIC18

The normal program flow (main) is referred to as the
foreground code. The interrupt service routine (ISR) is
referred to as the background code.

Copyright Thomson/Delmar Learning 2005. All Rights Reserved.

V 0.9 4

PIC18Fxx2 Interrupts
(Chap 8 of datasheet)

• Many PIC18Fxx2 interrupt sources
– When character is received on serial port
– When character is finished transmitting on serial port
– When A/D conversion is finished
– When external pin RB0 is pulled low
– Many more

• Interrupt Enable, Flag bits
– Each interrupt source has an ENABLE bit that allows an interrupt

to be generated if interrupt condition is met. By default, interrupts
are NOT enabled.

– Each interrupt source also has a FLAG bit that indicates if the
interrupt has occurred.

– Each interrupt source also has a PRIORITY bit that allows it to be
assigned a low or high priority.

V 0.9 5

Interrupt Logic

High Priority
Interrupt

Low Priority
InterruptCopyright Thomson/Delmar Learning 2005. All Rights Reserved.

TMR0IF : flag
bit, ‘1’ indicates
event is true.

TMR0IE : enable bit,
must be ‘1’ for
interrupt to be
generated.

TMR0IP : priority bit,
‘1’ high priority, ‘0’
low priority.

V 0.9 6

Interrupt Priorities
• When an interrupt occurs, processor finishes

current instruction, and calls an Interrupt Service
Routine (ISR)
– High priority interrupt routine at location 0x0008
– Low priority interrupt routine at location 0x0018
– An interrupt service routine should determine source of

interrupt, and service it (i.e, do the interrupt function).
• A high priority interrupt can interrupt the ISR of a

low priority interrupt, but not vice versa
– A high priority interrupt cannot interrupt (should not)

interrupt itself.

V 0.9 7

Interrupt Priorities (cont)

• Interrupt priorities can be disabled by setting the
IPEN bit (RCON[7]) to ‘0’.
– All priorities are classified as high priority (interrupt

jumps to 0x0008).

• This is the mode that will be used for lab and class
– This is compatible with the PIC16 family of micros
– We have no need for priorities in our lab exercises.

V 0.9 8

GIE, PEIE
• Global interrupt enable (GIE, INTCON[7]) can be used to

disable all interrupts
– By default, all interrupts disabled

• Peripheral interrupt enable (PEIE, INTCON[6]) can be
used to disable all peripheral interrupts
– By default, all peripheral interrupts disabled
– Peripheral interrupts are those associated with peripheral

subsystems such as the USART, the Analog/Digital converter,
timers, etc.

• If priorities are enabled,
– the GIE bit is known as GIEH (GIE for high priority interrupts)
– PEIE bit is known as GIEL (GIE for low priority interrupts).

V 0.9 9

When an enabled interrupt occurs...
• GIE bit is CLEARED – this disables further

interrupts (do not want to get caught in an infinite
loop!)
– If priorities are enabled, either GIEH or GIEL is

cleared, depending on interrupt priority

• Return address is pushed on the stack
• W, STATUS, BSR saved in shadow registers
• Jump to 0x0008 (high priority) or 0x0018 low

priority interrupt is done

V 0.9 10

ISR Responsibilities
• Must save the processor context (W register, and Status

Register, and BSR if necessary)
– If not saved, normal program execution will become unpredictable

since interrupt can happen at anytime
– If ISR uses registers such as FSRx or PRODH/PRODL, must save

these also!!!!!
• Must determine the source of the interrupt

– If multiple interrupts are enabled, check flag bit status
• Must service the interrupt (clear interrupt flag)

– E.g., for received character interrupt, read the RCREG, this clears the
RCIF bit automatically.

• Restore processor context
• Execute RETFIE (return from interrupt)

– Sets GIE to enable interrupts, reads PC from stack

V 0.9 11

Shadow Registers
• An interrupt can occur at any point in the execution of

program.
• The ISR will, at a minimum, change W and STATUS, and

probably the BSR
– These must be saved on ISR entry, and restored on ISR exit

• Shadow registers were added with the PIC18
– W, STATUS, and BSR are registers are saved automatically on

interrupt
– Will be restored on exit by the RETFIE (return from interrupt) if

the ‘s’ bit is set in the instruction word - the PICC18 C compiler
uses ‘RETFIE 1’ which restores the W, STATUS, BSR on return.

• Shadow registers can only be used with high priority
interrupts
– If low priority interrupt uses shadow registers, then can be

overwritten by high priority interrupt

V 0.9 12

CBLOCK 0x7D
w_temp, status_temp, bsr_temp
endc
org 0x008
goto isr_high_priority

org 0x0018
goto isr_low_priority

org 0x????
isr_high_priority

;;; ISR high priority code
retfie 1 ;; use shadow reg

isr_low_priority
movwf w_temp ; context
movff STATUS,status_temp
movff BSR, bsr_temp
;;....ISR CODE ...
;;.... . . .
movff bsr_temp,bsr ; restore context
movf w_temp,w
movff status_temp,STATUS
retfie

ISR Assembly
space for w, status, bsr

high priority ISR can use
shadow registers (fast
stack)

low priority must explicitly save
the processor context

restore context, do not use
shadow registers on ‘retfie’

V 0.9 13

PIC18 ISR in C

Do not have to clear RCIF
as it is cleared automatically
by reading RCREG.

Read character, set
semaphore got_char_flag
for main() function

Copyright Thomson/Delmar Learning 2005. All Rights Reserved.

V 0.9 14

Enabling Interrupts in C
// code for serial port setup not shown
// enable interrupts

IPEN = 0; // disable priorities IPEN = RCON(7)
RCIE = 1; // enable receive int, RCIE = PIE1(5)
PEIE = 1; // enable peripheral intr, PEIE = INTCON(6)
GIE = 1; // enable global intr, GIE = INTCON(7)

while(1) {
// wait for interrupt
while (!got_char_flag);
c = received_char;
got_char_flag =0; // clear flag
c++; // increment Char
putch (c); // send the char

}

Set by interrupt service
routine – this is a
semaphore.

Get character read by
interrupt service
routine

V 0.9 15

What is a semaphore?
The main() code (i.e. foreground code) must be signaled
when an interrupt action has occurred.

The isr() code (i.e, background code) must perform the IO
action that is caused by the interrupt. After servicing the
IO, it must signal the main() code via some variable to
indicate that the interrupt occurred.

A variable used by an ISR to signal to main() code that an
interrupt has occurred is called a semaphore.

V 0.9 16

Soooooo…when are interrupts useful?
Previous example simply illustrated the use of interrupts for
reading serial data. Interrupt usage was not really needed since
main routine just waited for data to arrive so no advantage over
polled IO.

Interrupts for serial IO useful when cannot poll serial port often
enough!

Get serial data

Do calculation

Output result

New serial data arrives, if
not using ISR to save data
in buffer, will miss it!!

V 0.9 17

doroot.c
Read decimal number
in ASCII format from

serial port

Calculate integer
square root

Output result to
serial port

New data can arrive. Current
ISR only has room to save
ONE character. Depending
on baud rate, can have
overrun error (input FIFO fills
up before we read data
again).

Copyright Thomson/Delmar Learning 2005. All Rights Reserved.

V 0.9 18

Data lost when no buffering is done

USART overrun occurs, application hangs.

Copyright Thomson/Delmar Learning 2005. All Rights Reserved.

V 0.9 19

FIFO Buffering of Data for Interrupt IO

• A circular buffer is most often used to handle
interrupt driven INPUT.

• A circular buffer requires the following pointers
– base address of memory buffer
– head index (head pointer)
– tail index (tail pointer)
– size of buffer

• A circular buffer is simply another name for a
FIFO (First-In-First-Out) buffer.
– The name circular buffer helps to visualize the

wraparound conditon

V 0.9 20

Circular buffer, 8 locations long
When buffer is empty, head = tail index

??? ← tailhead →
????
????
????
????
????
????
????

V 0.9 21

Circular buffer, write operation
Interrupt service routine places items in memory buffer by
incrementing head index, then storing value

write a value write a 2nd value
??? ← tail ??? ← tail

head → dataA dataA
???? dataBhead →
???? ????
???? ????
???? ????
???? ????
???? ????

V 0.9 22

Circular buffer, read operation
Input function occasionally checks to see if head not equal to
tail, if true, then read value by incrementing tail, then reading
memory.

read dataA value read dataB value
??? ???

dataA ← tail dataA
dataBhead → ← taildataBhead →
???? ????
???? ????
???? ????
???? ????
???? ????

V 0.9 23

Circular buffer, wraparound
when head pointer gets to end of buffer, set back to top of
buffer (wraparound)

head at end of buffer head at end of buffer
??? dataHhead →

dataA dataA
dataB ← tail dataB ← tail
dataC dataC
dataD dataD
dataE dataE
dataF dataF
dataGhead → dataG

V 0.9 24

Circular buffer, buffer FULL
buffer FULL occurs if interrupt service routines increments
head pointer to place new data, and head = tail!!!!

near overflow buffer FULL

dataH dataH
dataI dataIhead →
dataB dataJ← tail head → ← tail
dataC dataC

Function
taking data out
of buffer
thinks buffer is
empty!!!!

dataD dataD
dataE dataE
dataF dataF
dataG dataG

V 0.9 25

How to pick size of circular buffer?
• Must be big enough so that buffer full condition

never occurs
• Routine that is taking data out of buffer must

check it often enough to ensure that buffer full
condition does not occur.
– If buffer fills up because not checking often enough,

then increase the size of the buffer
– No matter how large buffer is, must periodically read

the data.
• Buffer must be big enough so that bursts of data

into buffer does not cause buffer full condition.

V 0.9 26

ISR for Interrupt Driven Serial IO
#define BUFSIZE 2
unsigned char ibuf[BUFSIZE];
unsigned char head,tail;

void interrupt pic_isr(void){

// see if this interrupt was generated by
// receive character
if (RCIF) { // check RCIF bit

head = head + 1;
if (head == BUFMAX) head = 0;
// reading this register clears interrupt bit
ibuf[head] = RCREG;

}
}

triggered when
serial data arrives.
Save in buffer.

Increasing buffer size will increase amount of time that
main{} code can wait before reading input buff.

V 0.9 27

New getch() for Interrupt Receive

unsigned char getch (void){

unsigned char c;

while (head == tail) {
asm("clrwdt");
};

tail = tail + 1;
if (tail == BUFMAX) tail = 0;
c = ibuf[tail];
return(c);

}

Wait for ISR to trigger
and save data in buffer.
Combination of head/tail
is the semaphore!!!

Must wrap tail pointer
if at end of buffer.

Read data from buffer

V 0.9 28

INT0/INT1/INT2 Interrupts

• The RB0/RB1/RB2 inputs can generate an
interrupt on either a rising or falling edge.

• These are called the INT0/INT1/INT2 interrupts.
• The INTEDG0/INTEDG1/INTEDG2 bits

determine the active edge
– ‘0’ for falling edge, ‘1’ for rising edge

• These interrupts can wake the processor from
sleep mode.

V 0.9 29

Interrupt Driven LED/Switch IO

implement this with
interrupt driven IO

Copyright Thomson/Delmar Learning 2005. All Rights Reserved.

V 0.9 30

led_blink, led_on tell main()
how to control LED

Copyright Thomson/Delmar Learning 2005. All Rights Reserved.

V 0.9 31

Semaphores led_blink, led_on control LED state in main()
loop.

Copyright Thomson/Delmar Learning 2005. All Rights Reserved.

V 0.9 32

Interrupt Driven
LED/Switch IO,

example #2
Use Interrupt service
routine to watch for
falling/rising edges on
RB0 input indicating a
button press!!!!

Use variables led_on,
led_blink to tell main()
that the LED should be
turned on or blink.

Change active
interrupt edge in ISR

Copyright Thomson/Delmar Learning 2005. All Rights Reserved.

V 0.9 33

active
interrupt
edge is
changed
when go
from ON to
BLINK
state

Initialize RB0 so
initially rising-
edge triggered

Active edge
changed!!!

Copyright Thomson/Delmar Learning 2005. All Rights Reserved.

V 0.9 34

main() For Example #2

Basically the same as for example #1 except INT0 is
configured for rising edge interrupt initially.

V 0.9 35

What do you have to know?

• How interrupts behave on the PIC18 for serial IO
• Function of PEIE, GIE bits
• Responsibilities of ISR
• Assembly language structure of ISR in PIC18
• ISR in PICC C
• Circular buffer operation
• Interrupt-driven LED/Switch IO

	Polled IO versus Interrupt Driven IO
	Polled IO: getch()
	Interrupt-driven IO on the PIC18
	PIC18Fxx2 Interrupts (Chap 8 of datasheet)
	Interrupt Priorities
	Interrupt Priorities (cont)
	GIE, PEIE
	When an enabled interrupt occurs...
	ISR Responsibilities
	Shadow Registers
	ISR Assembly
	PIC18 ISR in C
	Enabling Interrupts in C
	What is a semaphore?
	Soooooo…when are interrupts useful?
	doroot.c
	Data lost when no buffering is done
	FIFO Buffering of Data for Interrupt IO
	Circular buffer, 8 locations long
	Circular buffer, write operation
	Circular buffer, read operation
	Circular buffer, wraparound
	Circular buffer, buffer FULL
	How to pick size of circular buffer?
	ISR for Interrupt Driven Serial IO
	New getch() for Interrupt Receive
	INT0/INT1/INT2 Interrupts
	Interrupt Driven LED/Switch IO
	Interrupt Driven LED/Switch IO, example #2
	main() For Example #2
	What do you have to know?

