
 Make HowStuffWorks your home page! Mobil Travel Guide | Consumer Guide Prod

Search HowStuffWorks and the

Auto Stuff Science Stuff Health Stuff Entertainment Stuff Travel Stu
Computer Stuff Electronics Stuff Home Stuff Money Stuff People Stuff S

Main > Computer > Software

Click here to go back to the normal view!

How C Programming Works
by Marshall Brain

The C programming language is a popular and widely used programming language for creating
computer programs. Programmers around the world embrace C because it gives maximum control
and efficiency to the programmer. If you are a programmer, or if you are interested in becoming a
programmer, there are a couple of benefits you gain from learning C:

You will be able to read and write code for a large number of platforms -- everything from
microcontrollers to the most advanced scientific systems can be written in C, and many modern
operating systems are written in C.

The jump to the object oriented C++ language becomes much easier. C++ is an extension of C,
and it is nearly impossible to learn C++ without learning C first.

In this article, we will walk through the entire language and show you how to become a C
programmer, starting at the beginning. You will be amazed at all of the different things you can create
once you know C!

This animation shows the execution of a simple C program. By

the end of this article you will understand how it works!

Page 1 of 73Howstuffworks "How C Programming Works"

9/4/2006http://computer.howstuffworks.com/c.htm/printable

What is C?
C is a computer programming language. That means that you can use C to create lists of
instructions for a computer to follow. C is one of thousands of programming languages currently in
use. C has been around for several decades and has won widespread acceptance because it gives
programmers maximum control and efficiency. C is an easy language to learn. It is a bit more cryptic
in its style than some other languages, but you get beyond that fairly quickly.

C is what is called a compiled language. This means that once you write your C program, you must
run it through a C compiler to turn your program into an executable that the computer can run
(execute). The C program is the human-readable form, while the executable that comes out of the
compiler is the machine-readable and executable form. What this means is that to write and run a C
program, you must have access to a C compiler. If you are using a UNIX machine (for example, if you
are writing CGI scripts in C on your host's UNIX computer, or if you are a student working on a lab's
UNIX machine), the C compiler is available for free. It is called either "cc" or "gcc" and is available on
the command line. If you are a student, then the school will likely provide you with a compiler -- find
out what the school is using and learn about it. If you are working at home on a Windows machine,
you are going to need to download a free C compiler or purchase a commercial compiler. A widely
used commercial compiler is Microsoft's Visual C++ environment (it compiles both C and C++
programs). Unfortunately, this program costs several hundred dollars. If you do not have hundreds of
dollars to spend on a commercial compiler, then you can use one of the free compilers available on
the Web. See http://delorie.com/djgpp/ as a starting point in your search.

We will start at the beginning with an extremely simple C program and build up from there. I will
assume that you are using the UNIX command line and gcc as your environment for these examples;

Page 2 of 73Howstuffworks "How C Programming Works"

9/4/2006http://computer.howstuffworks.com/c.htm/printable

if you are not, all of the code will still work fine -- you will simply need to understand and use whatever
compiler you have available.

Let's get started!

The Simplest C Program
Let's start with the simplest possible C program and use it both to understand the basics of C and the
C compilation process. Type the following program into a standard text editor (vi or emacs on UNIX,
Notepad on Windows or TeachText on a Macintosh). Then save the program to a file named samp.c.
If you leave off .c, you will probably get some sort of error when you compile it, so make sure you
remember the .c. Also, make sure that your editor does not automatically append some extra
characters (such as .txt) to the name of the file. Here's the first program:

#include <stdio.h>

int main()
{
 printf("This is output from my first program!\n");
 return 0;
}

When executed, this program instructs the computer to print out the line "This is output from my first
program!" -- then the program quits. You can't get much simpler than that!

To compile this code, take the following steps:

On a UNIX machine, type gcc samp.c -o samp (if gcc does not work, try cc). This line invokes
the C compiler called gcc, asks it to compile samp.c and asks it to place the executable file it
creates under the name samp. To run the program, type samp (or, on some UNIX machines,
./samp).
On a DOS or Windows machine using DJGPP, at an MS-DOS prompt type gcc samp.c -o
samp.exe. This line invokes the C compiler called gcc, asks it to compile samp.c and asks it to
place the executable file it creates under the name samp.exe. To run the program, type samp.
If you are working with some other compiler or development system, read and follow the
directions for the compiler you are using to compile and execute the program.

You should see the output "This is output from my first program!" when you run the program. Here is
what happened when you compiled the program:

Position
When you enter this program, position #include so that the pound
sign is in column 1 (the far left side). Otherwise, the spacing and
indentation can be any way you like it. On some UNIX systems,
you will find a program called cb, the C Beautifier, which will
format code for you. The spacing and indentation shown above is
a good example to follow.

Page 3 of 73Howstuffworks "How C Programming Works"

9/4/2006http://computer.howstuffworks.com/c.htm/printable

If you mistype the program, it either will not compile or it will not run. If the program does not compile
or does not run correctly, edit it again and see where you went wrong in your typing. Fix the error and
try again.

The Simplest C Program: What's Happening?
Let's walk through this program and start to see what the different lines are doing (Click here to open
the program in another window):

This C program starts with #include <stdio.h>. This line includes the "standard I/O library"
into your program. The standard I/O library lets you read input from the keyboard (called
"standard in"), write output to the screen (called "standard out"), process text files stored on the
disk, and so on. It is an extremely useful library. C has a large number of standard libraries like
stdio, including string, time and math libraries. A library is simply a package of code that
someone else has written to make your life easier (we'll discuss libraries a bit later).

The line int main() declares the main function. Every C program must have a function named
main somewhere in the code. We will learn more about functions shortly. At run time, program
execution starts at the first line of the main function.

In C, the { and } symbols mark the beginning and end of a block of code. In this case, the block
of code making up the main function contains two lines.

The printf statement in C allows you to send output to standard out (for us, the screen). The

Page 4 of 73Howstuffworks "How C Programming Works"

9/4/2006http://computer.howstuffworks.com/c.htm/printable

portion in quotes is called the format string and describes how the data is to be formatted
when printed. The format string can contain string literals such as "This is output from my first
program!," symbols for carriage returns (\n), and operators as placeholders for variables (see
below). If you are using UNIX, you can type man 3 printf to get complete documentation for
the printf function. If not, see the documentation included with your compiler for details about
the printf function.

The return 0; line causes the function to return an error code of 0 (no error) to the shell that
started execution. More on this capability a bit later.

Variables
As a programmer, you will frequently want your program to "remember" a value. For example, if your
program requests a value from the user, or if it calculates a value, you will want to remember it
somewhere so you can use it later. The way your program remembers things is by using variables.
For example:

 int b;

This line says, "I want to create a space called b that is able to hold one integer value." A variable has
a name (in this case, b) and a type (in this case, int, an integer). You can store a value in b by saying
something like:

 b = 5;

You can use the value in b by saying something like:

 printf("%d", b);

In C, there are several standard types for variables:

int - integer (whole number) values
float - floating point values
char - single character values (such as "m" or "Z")

We will see examples of these other types as we go along.

Printf
The printf statement allows you to send output to standard out. For us, standard out is generally
the screen (although you can redirect standard out into a text file or another command).

Here is another program that will help you learn more about printf:

#include <stdio.h>

int main()
{
 int a, b, c;
 a = 5;
 b = 7;
 c = a + b;
 printf("%d + %d = %d\n", a, b, c);
 return 0;

Page 5 of 73Howstuffworks "How C Programming Works"

9/4/2006http://computer.howstuffworks.com/c.htm/printable

}

Type this program into a file and save it as add.c. Compile it with the line gcc add.c -o add and then
run it by typing add (or ./add). You will see the line "5 + 7 = 12" as output.

Here is an explanation of the different lines in this program:

The line int a, b, c; declares three integer variables named a, b and c. Integer variables hold
whole numbers.

The next line initializes the variable named a to the value 5.

The next line sets b to 7.

The next line adds a and b and "assigns" the result to c.

The computer adds the value in a (5) to the value in b (7) to form the result 12, and then places
that new value (12) into the variable c. The variable c is assigned the value 12. For this reason,
the = in this line is called "the assignment operator."

The printf statement then prints the line "5 + 7 = 12." The %d placeholders in the printf
statement act as placeholders for values. There are three %d placeholders, and at the end of
the printf line there are the three variable names: a, b and c. C matches up the first %d with a
and substitutes 5 there. It matches the second %d with b and substitutes 7. It matches the third
%d with c and substitutes 12. Then it prints the completed line to the screen: 5 + 7 = 12. The +,
the = and the spacing are a part of the format line and get embedded automatically between
the %d operators as specified by the programmer.

Printf: Reading User Values
The previous program is good, but it would be better if it read in the values 5 and 7 from the user
instead of using constants. Try this program instead:

#include <stdio.h>

int main()
{
 int a, b, c;
 printf("Enter the first value:");
 scanf("%d", &a);
 printf("Enter the second value:");
 scanf("%d", &b);
 c = a + b;
 printf("%d + %d = %d\n", a, b, c);
 return 0;
}

Here's how this program works when you execute it:

Page 6 of 73Howstuffworks "How C Programming Works"

9/4/2006http://computer.howstuffworks.com/c.htm/printable

Make the changes, then compile and run the program to make sure it works. Note that scanf uses the
same sort of format string as printf (type man scanf for more info). Also note the & in front of a and b.
This is the address operator in C: It returns the address of the variable (this will not make sense until
we discuss pointers). You must use the & operator in scanf on any variable of type char, int, or float,
as well as structure types (which we will get to shortly). If you leave out the & operator, you will get an
error when you run the program. Try it so that you can see what that sort of run-time error looks like.

Let's look at some variations to understand printf completely. Here is the simplest printf statement:

 printf("Hello");

This call to printf has a format string that tells printf to send the word "Hello" to standard out. Contrast
it with this:

 printf("Hello\n");

The difference between the two is that the second version sends the word "Hello" followed by a
carriage return to standard out.

The following line shows how to output the value of a variable using printf.

 printf("%d", b);

The %d is a placeholder that will be replaced by the value of the variable b when the printf statement
is executed. Often, you will want to embed the value within some other words. One way to accomplish
that is like this:

 printf("The temperature is ");
 printf("%d", b);
 printf(" degrees\n");

An easier way is to say this:

 printf("The temperature is %d degrees\n", b);

You can also use multiple %d placeholders in one printf statement:

Page 7 of 73Howstuffworks "How C Programming Works"

9/4/2006http://computer.howstuffworks.com/c.htm/printable

 printf("%d + %d = %d\n", a, b, c);

In the printf statement, it is extremely important that the number of operators in the format string
corresponds exactly with the number and type of the variables following it. For example, if the format
string contains three %d operators, then it must be followed by exactly three parameters and they
must have the same types in the same order as those specified by the operators.

You can print all of the normal C types with printf by using different placeholders:

int (integer values) uses %d
float (floating point values) uses %f
char (single character values) uses %c
character strings (arrays of characters, discussed later) use %s

You can learn more about the nuances of printf on a UNIX machine by typing man 3 printf. Any other
C compiler you are using will probably come with a manual or a help file that contains a description of
printf.

Scanf
The scanf function allows you to accept input from standard in, which for us is generally the
keyboard. The scanf function can do a lot of different things, but it is generally unreliable unless used
in the simplest ways. It is unreliable because it does not handle human errors very well. But for simple
programs it is good enough and easy-to-use.

The simplest application of scanf looks like this:

 scanf("%d", &b);

The program will read in an integer value that the user enters on the keyboard (%d is for integers, as
is printf, so b must be declared as an int) and place that value into b.

The scanf function uses the same placeholders as printf:

int uses %d
float uses %f
char uses %c
character strings (discussed later) use %s

You MUST put & in front of the variable used in scanf. The reason why will become clear once you
learn about pointers. It is easy to forget the & sign, and when you forget it your program will almost
always crash when you run it.

In general, it is best to use scanf as shown here -- to read a single value from the keyboard. Use
multiple calls to scanf to read multiple values. In any real program, you will use the gets or fgets
functions instead to read text a line at a time. Then you will "parse" the line to read its values. The
reason that you do that is so you can detect errors in the input and handle them as you see fit.

The printf and scanf functions will take a bit of practice to be completely understood, but once
mastered they are extremely useful.

Try This!

Page 8 of 73Howstuffworks "How C Programming Works"

9/4/2006http://computer.howstuffworks.com/c.htm/printable

Branching and Looping
In C, both if statements and while loops rely on the idea of Boolean expressions. Here is a simple C
program demonstrating an if statement:

#include <stdio.h>

int main()
{
 int b;
 printf("Enter a value:");
 scanf("%d", &b);
 if (b < 0)
 printf("The value is negative\n");
 return 0;

Modify this program so that it accepts three values instead
of two and adds all three together:

#include <stdio.h>

int main()
{
 int a, b, c;
 printf("Enter the first value:");
 scanf("%d", &a);
 printf("Enter the second value:");
 scanf("%d", &b);
 c = a + b;
 printf("%d + %d = %d\n", a, b, c);
 return 0;
}

Try deleting or adding random characters or words in one
of the previous programs and watch how the compiler
reacts to these errors.

For example, delete the b variable in the first line of the
above program and see what the compiler does when you
forget to declare a variable. Delete a semicolon and see
what happens. Leave out one of the braces. Remove one
of the parentheses next to the main function. Make each
error by itself and then run the program through the
compiler to see what happens. By simulating errors like
these, you can learn about different compiler errors, and
that will make your typos easier to find when you make
them for real.

C Errors to Avoid

Using the wrong character case - Case matters in C, so
you cannot type Printf or PRINTF. It must be printf.
Forgetting to use the & in scanf
Too many or too few parameters following the format
statement in printf or scanf
Forgetting to declare a variable name before using it

Page 9 of 73Howstuffworks "How C Programming Works"

9/4/2006http://computer.howstuffworks.com/c.htm/printable

}

This program accepts a number from the user. It then tests the number using an if statement to see if
it is less than 0. If it is, the program prints a message. Otherwise, the program is silent. The (b < 0)
portion of the program is the Boolean expression. C evaluates this expression to decide whether or
not to print the message. If the Boolean expression evaluates to True, then C executes the single line
immediately following the if statement (or a block of lines within braces immediately following the if
statement). If the Boolean expression is False, then C skips the line or block of lines immediately
following the if statement.

Here's slightly more complex example:

#include <stdio.h>

int main()
{
 int b;
 printf("Enter a value:");
 scanf("%d", &b);
 if (b < 0)

Page 10 of 73Howstuffworks "How C Programming Works"

9/4/2006http://computer.howstuffworks.com/c.htm/printable

 printf("The value is negative\n");
 else if (b == 0)
 printf("The value is zero\n");
 else
 printf("The value is positive\n");
 return 0;
}

In this example, the else if and else sections evaluate for zero and positive values as well.

Here is a more complicated Boolean expression:

if ((x==y) && (j>k))
 z=1;
else
 q=10;

This statement says, "If the value in variable x equals the value in variable y, and if the value in
variable j is greater than the value in variable k, then set the variable z to 1, otherwise set the variable
q to 10." You will use if statements like this throughout your C programs to make decisions. In
general, most of the decisions you make will be simple ones like the first example; but on occasion,
things get more complicated.

Notice that C uses == to test for equality, while it uses = to assign a value to a variable. The && in
C represents a Boolean AND operation.

Here are all of the Boolean operators in C:

 equality ==
 less than <
 Greater than >
 <= <=
 >= >=
 inequality !=
 and &&
 or ||
 not !

You'll find that while statements are just as easy to use as if statements. For example:

while (a < b)
{
 printf("%d\n", a);
 a = a + 1;
}

This causes the two lines within the braces to be executed repeatedly until a is greater than or equal
to b. The while statement in general works like this:

Page 11 of 73Howstuffworks "How C Programming Works"

9/4/2006http://computer.howstuffworks.com/c.htm/printable

C also provides a do-while structure:

do
{
 printf("%d\n", a);
 a = a + 1;
}
while (a < b);

The for loop in C is simply a shorthand way of expressing a while statement. For example, suppose
you have the following code in C:

x=1;
while (x<10)
{
 blah blah blah
 x++; /* x++ is the same as saying x=x+1 */
}

You can convert this into a for loop as follows:

for(x=1; x<10; x++)
{
 blah blah blah
}

Note that the while loop contains an initialization step (x=1), a test step (x<10), and an increment step
(x++). The for loop lets you put all three parts onto one line, but you can put anything into those three
parts. For example, suppose you have the following loop:

a=1;
b=6;
while (a < b)
{
 a++;
 printf("%d\n",a);
}

Page 12 of 73Howstuffworks "How C Programming Works"

9/4/2006http://computer.howstuffworks.com/c.htm/printable

You can place this into a for statement as well:

for (a=1,b=6; a < b; a++,printf("%d\n",a));

It is slightly confusing, but it is possible. The comma operator lets you separate several different
statements in the initialization and increment sections of the for loop (but not in the test section). Many
C programmers like to pack a lot of information into a single line of C code; but a lot of people think it
makes the code harder to understand, so they break it up.

Looping: A Real Example
Let's say that you would like to create a program that prints a Fahrenheit-to-Celsius conversion table.
This is easily accomplished with a for loop or a while loop:

#include <stdio.h>

int main()
{
 int a;
 a = 0;

= vs. == in Boolean expressions
The == sign is a problem in C because every now and then you
may forget and type just = in a Boolean expression. This is an
easy mistake to make, but to the compiler there is a very
important difference. C will accept either = and == in a Boolean
expression -- the behavior of the program changes remarkably
between the two, however.

Boolean expressions evaluate to integers in C, and integers can
be used inside of Boolean expressions. The integer value 0 in C
is False, while any other integer value is True. The following is
legal in C:

#include <stdio.h>

int main()
{
 int a;

 printf("Enter a number:");
 scanf("%d", &a);
 if (a)
 {
 printf("The value is True\n");
 }
 return 0;
}

If a is anything other than 0, the printf statement gets executed.

In C, a statement like if (a=b) means, "Assign b to a, and then
test a for its Boolean value." So if a becomes 0, the if statement is
False; otherwise, it is True. The value of a changes in the
process. This is not the intended behavior if you meant to type ==
(although this feature is useful when used correctly), so be careful
with your = and == usage.

Page 13 of 73Howstuffworks "How C Programming Works"

9/4/2006http://computer.howstuffworks.com/c.htm/printable

 while (a <= 100)
 {
 printf("%4d degrees F = %4d degrees C\n",
 a, (a - 32) * 5 / 9);
 a = a + 10;
 }
 return 0;
}

If you run this program, if will produce a table of values starting at 0 degrees F and ending at 100
degrees F. The output will look like this:

 0 degrees F = -17 degrees C
 10 degrees F = -12 degrees C
 20 degrees F = -6 degrees C
 30 degrees F = -1 degrees C
 40 degrees F = 4 degrees C
 50 degrees F = 10 degrees C
 60 degrees F = 15 degrees C
 70 degrees F = 21 degrees C
 80 degrees F = 26 degrees C
 90 degrees F = 32 degrees C
 100 degrees F = 37 degrees C

The table's values are in increments of 10 degrees. You can see that you can easily change the
starting, ending or increment values of the table that the program produces.

If you wanted your values to be more accurate, you could use floating point values instead:

#include <stdio.h>

int main()
{
 float a;
 a = 0;
 while (a <= 100)
 {
 printf("%6.2f degrees F = %6.2f degrees C\n",
 a, (a - 32.0) * 5.0 / 9.0);
 a = a + 10;
 }
 return 0;
}

You can see that the declaration for a has been changed to a float, and the %f symbol replaces the %
d symbol in the printf statement. In addition, the %f symbol has some formatting applied to it: The
value will be printed with six digits preceding the decimal point and two digits following the decimal
point.

Now let's say that we wanted to modify the program so that the temperature 98.6 is inserted in the
table at the proper position. That is, we want the table to increment every 10 degrees, but we also
want the table to include an extra line for 98.6 degrees F because that is the normal body temperature
for a human being. The following program accomplishes the goal:

Page 14 of 73Howstuffworks "How C Programming Works"

9/4/2006http://computer.howstuffworks.com/c.htm/printable

#include <stdio.h>

int main()
{
 float a;
 a = 0;
 while (a <= 100)
 {
 if (a > 98.6)
 {
 printf("%6.2f degrees F = %6.2f degrees C\n",
 98.6, (98.6 - 32.0) * 5.0 / 9.0);
 }
 printf("%6.2f degrees F = %6.2f degrees C\n",
 a, (a - 32.0) * 5.0 / 9.0);
 a = a + 10;
 }
 return 0;
}

This program works if the ending value is 100, but if you change the ending value to 200 you will find
that the program has a bug. It prints the line for 98.6 degrees too many times. We can fix that
problem in several different ways. Here is one way:

#include <stdio.h>

int main()
{
 float a, b;
 a = 0;
 b = -1;
 while (a <= 100)
 {
 if ((a > 98.6) && (b < 98.6))
 {
 printf("%6.2f degrees F = %6.2f degrees C\n",
 98.6, (98.6 - 32.0) * 5.0 / 9.0);
 }
 printf("%6.2f degrees F = %6.2f degrees C\n",
 a, (a - 32.0) * 5.0 / 9.0);
 b = a;
 a = a + 10;
 }
 return 0;
}

Try This!

Try changing the Fahrenheit-to-Celsius program so that it
uses scanf to accept the starting, ending and increment
value for the table from the user.
Add a heading line to the table that is produced.
Try to find a different solution to the bug fixed by the
previous example.

Page 15 of 73Howstuffworks "How C Programming Works"

9/4/2006http://computer.howstuffworks.com/c.htm/printable

Arrays
In this section, we will create a small C program that generates 10 random numbers and sorts them.
To do that, we will use a new variable arrangement called an array.

An array lets you declare and work with a collection of values of the
same type. For example, you might want to create a collection of
five integers. One way to do it would be to declare five integers
directly:

int a, b, c, d, e;

This is okay, but what if you needed a thousand integers? An easier
way is to declare an array of five integers:

int a[5];

The five separate integers inside this array are accessed by an
index. All arrays start at index zero and go to n-1 in C. Thus, int a
[5]; contains five elements. For example:

int a[5];

a[0] = 12;
a[1] = 9;
a[2] = 14;
a[3] = 5;
a[4] = 1;

One of the nice things about array indexing is that you can use a

Create a table that converts pounds to kilograms or miles
to kilometers.

C Errors to Avoid

Putting = when you mean == in an if or while statement
Forgetting to increment the counter inside the while loop -
If you forget to increment the counter, you get an infinite
loop (the loop never ends).
Accidentally putting a ; at the end of a for loop or if
statement so that the statement has no effect - For
example:

for (x=1; x<10; x++);
 printf("%d\n",x);

only prints out one value because the semicolon after the
for statement acts as the one line the for loop executes.

Page 16 of 73Howstuffworks "How C Programming Works"

9/4/2006http://computer.howstuffworks.com/c.htm/printable

loop to manipulate the index. For example, the following code initializes all of the values in the array
to 0:

int a[5];
int i;

for (i=0; i<5; i++)
 a[i] = 0;

The following code initializes the values in the array sequentially and then prints them out:

#include <stdio.h>

int main()
{
 int a[5];
 int i;

 for (i=0; i<5; i++)
 a[i] = i;
 for (i=0; i<5; i++)
 printf("a[%d] = %d\n", i, a[i]);
}

Arrays are used all the time in C. To understand a common usage, start an editor and enter the
following code:

#include <stdio.h>

#define MAX 10

int a[MAX];
int rand_seed=10;

/* from K&R
 - returns random number between 0 and 32767.*/
int rand()
{
 rand_seed = rand_seed * 1103515245 +12345;
 return (unsigned int)(rand_seed / 65536) % 32768;
}

int main()
{
 int i,t,x,y;

 /* fill array */
 for (i=0; i < MAX; i++)
 {
 a[i]=rand();
 printf("%d\n",a[i]);
 }

 /* more stuff will go here in a minute */

Page 17 of 73Howstuffworks "How C Programming Works"

9/4/2006http://computer.howstuffworks.com/c.htm/printable

 return 0;
}

This code contains several new concepts. The #define line declares a constant named MAX and sets
it to 10. Constant names are traditionally written in all caps to make them obvious in the code. The
line int a[MAX]; shows you how to declare an array of integers in C. Note that because of the position
of the array's declaration, it is global to the entire program.

The line int rand_seed=10 also declares a global variable, this time named rand_seed, that is
initialized to 10 each time the program begins. This value is the starting seed for the random number
code that follows. In a real random number generator, the seed should initialize as a random value,
such as the system time. Here, the rand function will produce the same values each time you run the
program.

The line int rand() is a function declaration. The rand function accepts no parameters and returns an
integer value. We will learn more about functions later. The four lines that follow implement the rand
function. We will ignore them for now.

The main function is normal. Four local integers are declared, and the array is filled with 10 random
values using a for loop. Note that the array a contains 10 individual integers. You point to a specific
integer in the array using square brackets. So a[0] refers to the first integer in the array, a[1] refers to
the second, and so on. The line starting with /* and ending with */ is called a comment. The compiler
completely ignores the line. You can place notes to yourself or other programmers in comments.

Now add the following code in place of the more stuff ... comment:

/* bubble sort the array */
for (x=0; x < MAX-1; x++)
 for (y=0; y < MAX-x-1; y++)
 if (a[y] > a[y+1])
 {
 t=a[y];
 a[y]=a[y+1];
 a[y+1]=t;
 }
/* print sorted array */
printf("--------------------\n");
for (i=0; i < MAX; i++)
printf("%d\n",a[i]);

This code sorts the random values and prints them in sorted order. Each time you run it, you will get
the same values. If you would like to change the values that are sorted, change the value of
rand_seed each time you run the program.

The only easy way to truly understand what this code is doing is to execute it "by hand." That is,
assume MAX is 4 to make it a little more manageable, take out a sheet of paper and pretend you are
the computer. Draw the array on your paper and put four random, unsorted values into the array.
Execute each line of the sorting section of the code and draw out exactly what happens. You will find
that, each time through the inner loop, the larger values in the array are pushed toward the bottom of
the array and the smaller values bubble up toward the top.

Try This!

Page 18 of 73Howstuffworks "How C Programming Works"

9/4/2006http://computer.howstuffworks.com/c.htm/printable

More on Arrays

Variable Types
There are three standard variable types in C:

Integer: int
Floating point: float
Character: char

An int is a 4-byte integer value. A float is a 4-byte floating point value. A char is a 1-byte single
character (like "a" or "3"). A string is declared as an array of characters.

There are a number of derivative types:

double (8-byte floating point value)
short (2-byte integer)
unsigned short or unsigned int (positive integers, no sign bit)

Operators and Operator Precedence
The operators in C are similar to the operators in most languages:

+ - addition
- - subtraction
/ - division
* - multiplication
% - mod

The / operator performs integer division if both operands are integers, and performs floating point

In the first piece of code, try changing the for loop that fills
the array to a single line of code. Make sure that the result
is the same as the original code.
Take the bubble sort code out and put it into its own
function. The function header will be void bubble_sort().
Then move the variables used by the bubble sort to the
function as well, and make them local there. Because the
array is global, you do not need to pass parameters.
Initialize the random number seed to different values.

C Errors to Avoid

C has no range checking, so if you index past the end of
the array, it will not tell you about it. It will eventually crash
or give you garbage data.
A function call must include () even if no parameters are
passed. For example, C will accept x=rand;, but the call
will not work. The memory address of the rand function will
be placed into x instead. You must say x=rand();.

Page 19 of 73Howstuffworks "How C Programming Works"

9/4/2006http://computer.howstuffworks.com/c.htm/printable

division otherwise. For example:

void main()
{
 float a;
 a=10/3;
 printf("%f\n",a);
}

This code prints out a floating point value since a is declared as type float, but a will be 3.0 because
the code performed an integer division.

Operator precedence in C is also similar to that in most other languages. Division and multiplication
occur first, then addition and subtraction. The result of the calculation 5+3*4 is 17, not 32, because
the * operator has higher precedence than + in C. You can use parentheses to change the normal
precedence ordering: (5+3)*4 is 32. The 5+3 is evaluated first because it is in parentheses. We'll get
into precedence later -- it becomes somewhat complicated in C once pointers are introduced.

Typecasting
C allows you to perform type conversions on the fly. You do this especially often when using pointers.
Typecasting also occurs during the assignment operation for certain types. For example, in the code
above, the integer value was automatically converted to a float.

You do typecasting in C by placing the type name in parentheses and putting it in front of the value
you want to change. Thus, in the above code, replacing the line a=10/3; with a=(float)10/3; produces
3.33333 as the result because 10 is converted to a floating point value before the division.

Typedef
You declare named, user-defined types in C with the typedef statement. The following example
shows a type that appears often in C code:

#define TRUE 1
#define FALSE 0
typedef int boolean;

void main()
{
 boolean b;

 b=FALSE;
 blah blah blah
}

This code allows you to declare Boolean types in C programs.

If you do not like the word "float'' for real numbers, you can say:

typedef float real;

and then later say:

Page 20 of 73Howstuffworks "How C Programming Works"

9/4/2006http://computer.howstuffworks.com/c.htm/printable

real r1,r2,r3;

You can place typedef statements anywhere in a C program as long as they come prior to their first
use in the code.

Structures
Structures in C allow you to group variable into a package. Here's an example:

struct rec
{
 int a,b,c;
 float d,e,f;
};

struct rec r;

As shown here, whenever you want to declare structures of the type rec, you have to say struct rec.
This line is very easy to forget, and you get many compiler errors because you absent-mindedly leave
out the struct. You can compress the code into the form:

struct rec
{
 int a,b,c;
 float d,e,f;
} r;

where the type declaration for rec and the variable r are declared in the same statement. Or you can
create a typedef statement for the structure name. For example, if you do not like saying struct rec r
every time you want to declare a record, you can say:

typedef struct rec rec_type;

and then declare records of type rec_type by saying:

rec_type r;

You access fields of structure using a period, for example, r.a=5;.

Arrays
You declare arrays by inserting an array size after a normal declaration, as shown below:

int a[10]; /* array of integers */
char s[100]; /* array of characters
 (a C string) */
float f[20]; /* array of reals */
struct rec r[50]; /* array of records */

Incrementing

Long Way Short Way
i=i+1; i++;
i=i-1; i--;
i=i+3; i += 3;

Page 21 of 73Howstuffworks "How C Programming Works"

9/4/2006http://computer.howstuffworks.com/c.htm/printable

i=i*j; i *= j;

Functions
Most languages allow you to create functions of some sort. Functions let you chop up a long program
into named sections so that the sections can be reused throughout the program. Functions accept
parameters and return a result. C functions can accept an unlimited number of parameters. In
general, C does not care in what order you put your functions in the program, so long as a the
function name is known to the compiler before it is called.

We have already talked a little about functions. The rand function seen previously is about as simple
as a function can get. It accepts no parameters and returns an integer result:

int rand()
/* from K&R
 - produces a random number between 0 and 32767.*/
{
 rand_seed = rand_seed * 1103515245 +12345;
 return (unsigned int)(rand_seed / 65536) % 32768;
}

The int rand() line declares the function rand to the rest of the program and specifies that rand will
accept no parameters and return an integer result. This function has no local variables, but if it
needed locals, they would go right below the opening { (C allows you to declare variables after any { -
- they exist until the program reaches the matching } and then they disappear. A function's local
variables therefore vanish as soon as the matching } is reached in the function. While they exist, local
variables live on the system stack.) Note that there is no ; after the () in the first line. If you
accidentally put one in, you will get a huge cascade of error messages from the compiler that make no
sense. Also note that even though there are no parameters, you must use the (). They tell the
compiler that you are declaring a function rather than simply declaring an int.

The return statement is important to any function that returns a result. It specifies the value that the
function will return and causes the function to exit immediately. This means that you can place
multiple return statements in the function to give it multiple exit points. If you do not place a return
statement in a function, the function returns when it reaches } and returns a random value (many
compilers will warn you if you fail to return a specific value). In C, a function can return values of any

Try This!

Try out different pieces of code to investigate typecasting
and precedence. Try out int, char, float, and so on.
Create an array of records and write some code to sort that
array on one integer field.

C Error to Avoid

As described above, using the / operator with two integers
will often produce an unexpected result, so think about it
whenever you use it.

Page 22 of 73Howstuffworks "How C Programming Works"

9/4/2006http://computer.howstuffworks.com/c.htm/printable

type: int, float, char, struct, etc.

There are several correct ways to call the rand function. For example: x=rand();. The variable x is
assigned the value returned by rand in this statement. Note that you must use () in the function call,
even though no parameter is passed. Otherwise, x is given the memory address of the rand function,
which is generally not what you intended.

You might also call rand this way:

if (rand() > 100)

Or this way:

rand();

In the latter case, the function is called but the value returned by rand is discarded. You may never
want to do this with rand, but many functions return some kind of error code through the function
name, and if you are not concerned with the error code (for example, because you know that an error
is impossible) you can discard it in this way.

Functions can use a void return type if you intend to return nothing. For example:

void print_header()
{
 printf("Program Number 1\n");
 printf("by Marshall Brain\n");
 printf("Version 1.0, released 12/26/91\n");
}

This function returns no value. You can call it with the following statement:

print_header();

You must include () in the call. If you do not, the function is not called, even though it will compile
correctly on many systems.

C functions can accept parameters of any type. For example:

int fact(int i)
{
 int j,k;

 j=1;
 for (k=2; k<=i; k++)
 j=j*k;
 return j;
}

returns the factorial of i, which is passed in as an integer parameter. Separate multiple parameters
with commas:

int add (int i, int j)
{

Page 23 of 73Howstuffworks "How C Programming Works"

9/4/2006http://computer.howstuffworks.com/c.htm/printable

 return i+j;
}

C has evolved over the years. You will sometimes see functions such as add written in the "old style,"
as shown below:

int add(i,j)
 int i;
 int j;
{
 return i+j;
}

It is important to be able to read code written in the older style. There is no difference in the way it
executes; it is just a different notation. You should use the "new style," (known as ANSI C) with the
type declared as part of the parameter list, unless you know you will be shipping the code to someone
who has access only to an "old style" (non-ANSI) compiler.

Functions: Function Prototypes
It is now considered good form to use function prototypes for all functions in your program. A
prototype declares the function name, its parameters, and its return type to the rest of the program
prior to the function's actual declaration. To understand why function prototypes are useful, enter the
following code and run it:

#include <stdio.h>

void main()
{
 printf("%d\n",add(3));
}

int add(int i, int j)
{
 return i+j;
}

This code compiles on many compilers without giving you a warning, even though add expects two
parameters but receives only one. It works because many C compilers do not check for parameter
matching either in type or count. You can waste an enormous amount of time debugging code in
which you are simply passing one too many or too few parameters by mistake. The above code
compiles properly, but it produces the wrong answer.

To solve this problem, C lets you place function prototypes at the beginning of (actually, anywhere in)
a program. If you do so, C checks the types and counts of all parameter lists. Try compiling the
following:

#include <stdio.h>

int add (int,int); /* function prototype for add */

void main()
{
 printf("%d\n",add(3));
}

Page 24 of 73Howstuffworks "How C Programming Works"

9/4/2006http://computer.howstuffworks.com/c.htm/printable

int add(int i, int j)
{
 return i+j;
}

The prototype causes the compiler to flag an error on the printf statement.

Place one prototype for each function at the beginning of your program. They can save you a great
deal of debugging time, and they also solve the problem you get when you compile with functions that
you use before they are declared. For example, the following code will not compile:

#include <stdio.h>

void main()
{
 printf("%d\n",add(3));
}

float add(int i, int j)
{
 return i+j;
}

Why, you might ask, will it compile when add returns an int but not when it returns a float? Because
older C compilers default to an int return value. Using a prototype will solve this problem. "Old
style" (non-ANSI) compilers allow prototypes, but the parameter list for the prototype must be empty.
Old style compilers do no error checking on parameter lists.

Libraries
Libraries are very important in C because the C language supports only the most basic features that it
needs. C does not even contain I/O functions to read from the keyboard and write to the screen.
Anything that extends beyond the basic language must be written by a programmer. The resulting
chunks of code are often placed in libraries to make them easily reusable. We have seen the
standard I/O, or stdio, library already: Standard libraries exist for standard I/O, math functions, string
handling, time manipulation, and so on. You can use libraries in your own programs to split up your
programs into modules. This makes them easier to understand, test, and debug, and also makes it
possible to reuse code from other programs that you write.

You can create your own libraries easily. As an example, we will take some code from a previous
article in this series and make a library out of two of its functions. Here's the code we will start with:

#include <stdio.h>

Try This!

Go back to the bubble sort example presented earlier and
create a function for the bubble sort.
Go back to earlier programs and create a function to get
input from the user rather than taking the input in the main
function.

Page 25 of 73Howstuffworks "How C Programming Works"

9/4/2006http://computer.howstuffworks.com/c.htm/printable

#define MAX 10

int a[MAX];
int rand_seed=10;

int rand()
/* from K&R
 - produces a random number between 0 and 32767.*/
{
 rand_seed = rand_seed * 1103515245 +12345;
 return (unsigned int)(rand_seed / 65536) % 32768;
}

void main()
{
 int i,t,x,y;

 /* fill array */
 for (i=0; i < MAX; i++)
 {
 a[i]=rand();
 printf("%d\n",a[i]);
 }

 /* bubble sort the array */
 for (x=0; x < MAX-1; x++)
 for (y=0; y < MAX-x-1; y++)
 if (a[y] > a[y+1])
 {
 t=a[y];
 a[y]=a[y+1];
 a[y+1]=t;
 }

 /* print sorted array */
 printf("--------------------\n");
 for (i=0; i < MAX; i++)
 printf("%d\n",a[i]);
}

This code fills an array with random numbers, sorts them using a bubble sort, and then displays the
sorted list.

Take the bubble sort code, and use what you learned in the previous article to make a function from it.
Since both the array a and the constant MAX are known globally, the function you create needs no
parameters, nor does it need to return a result. However, you should use local variables for x, y, and t.

Once you have tested the function to make sure it is working, pass in the number of elements as a
parameter rather than using MAX:

#include <stdio.h>

#define MAX 10

Page 26 of 73Howstuffworks "How C Programming Works"

9/4/2006http://computer.howstuffworks.com/c.htm/printable

int a[MAX];
int rand_seed=10;

/* from K&R
 - returns random number between 0 and 32767.*/
int rand()
{
 rand_seed = rand_seed * 1103515245 +12345;
 return (unsigned int)(rand_seed / 65536) % 32768;
}

void bubble_sort(int m)
{
 int x,y,t;
 for (x=0; x < m-1; x++)
 for (y=0; y < m-x-1; y++)
 if (a[y] > a[y+1])
 {
 t=a[y];
 a[y]=a[y+1];
 a[y+1]=t;
 }
}

void main()
{
 int i,t,x,y;
 /* fill array */
 for (i=0; i < MAX; i++)
 {
 a[i]=rand();
 printf("%d\n",a[i]);
 }
 bubble_sort(MAX);
 /* print sorted array */
 printf("--------------------\n");
 for (i=0; i < MAX; i++)
 printf("%d\n",a[i]);
}

You can also generalize the bubble_sort function even more by passing in a as a parameter:

bubble_sort(int m, int a[])

This line says, "Accept the integer array a of any size as a parameter." Nothing in the body of the
bubble_sort function needs to change. To call bubble_sort, change the call to:

bubble_sort(MAX, a);

Note that &a has not been used in the function call even though the sort will change a. The reason for
this will become clear once you understand pointers.

Making a Library
Since the rand and bubble_sort functions in the previous program are useful, you will probably want to

Page 27 of 73Howstuffworks "How C Programming Works"

9/4/2006http://computer.howstuffworks.com/c.htm/printable

reuse them in other programs you write. You can put them into a utility library to make their reuse
easier.

Every library consists of two parts: a header file and the actual code file. The header file, normally
denoted by a .h suffix, contains information about the library that programs using it need to know. In
general, the header file contains constants and types, along with prototypes for functions available in
the library. Enter the following header file and save it to a file named util.h.

/* util.h */
extern int rand();
extern void bubble_sort(int, int []);

These two lines are function prototypes. The word "extern" in C represents functions that will be linked
in later. If you are using an old-style compiler, remove the parameters from the parameter list of
bubble_sort.

Enter the following code into a file named util.c.

/* util.c */
#include "util.h"

int rand_seed=10;

/* from K&R
 - produces a random number between 0 and 32767.*/
int rand()
{
 rand_seed = rand_seed * 1103515245 +12345;
 return (unsigned int)(rand_seed / 65536) % 32768;
}

void bubble_sort(int m,int a[])
{
 int x,y,t;
 for (x=0; x < m-1; x++)
 for (y=0; y < m-x-1; y++)
 if (a[y] > a[y+1])
 {
 t=a[y];
 a[y]=a[y+1];
 a[y+1]=t;
 }
}

Note that the file includes its own header file (util.h) and that it uses quotes instead of the symbols <
and> , which are used only for system libraries. As you can see, this looks like normal C code. Note
that the variable rand_seed, because it is not in the header file, cannot be seen or modified by a
program using this library. This is called information hiding. Adding the word static in front of int
enforces the hiding completely.

Enter the following main program in a file named main.c.

#include <stdio.h>
#include "util.h"

Page 28 of 73Howstuffworks "How C Programming Works"

9/4/2006http://computer.howstuffworks.com/c.htm/printable

#define MAX 10

int a[MAX];

void main()
{
 int i,t,x,y;
 /* fill array */
 for (i=0; i < MAX; i++)
 {
 a[i]=rand();
 printf("%d\n",a[i]);
 }

 bubble_sort(MAX,a);

 /* print sorted array */
 printf("--------------------\n");
 for (i=0; i < MAX; i++)
 printf("%d\n",a[i]);
}

This code includes the utility library. The main benefit of using a library is that the code in the main
program is much shorter.

Compiling and Running with a Library
To compile the library, type the following at the command line (assuming you are using UNIX)
(replace gcc with cc if your system uses cc):

gcc -c -g util.c

The -c causes the compiler to produce an object file for the library. The object file contains the
library's machine code. It cannot be executed until it is linked to a program file that contains a main
function. The machine code resides in a separate file named util.o.

To compile the main program, type the following:

gcc -c -g main.c

This line creates a file named main.o that contains the machine code for the main program. To create
the final executable that contains the machine code for the entire program, link the two object files by
typing the following:

gcc -o main main.o util.o

This links main.o and util.o to form an executable named main. To run it, type main.

Makefiles make working with libraries a bit easier. You'll find out about makefiles on the next page.

Makefiles
It can be cumbersome to type all of the gcc lines over and over again, especially if you are making a
lot of changes to the code and it has several libraries. The make facility solves this problem. You can

Page 29 of 73Howstuffworks "How C Programming Works"

9/4/2006http://computer.howstuffworks.com/c.htm/printable

use the following makefile to replace the compilation sequence above:

main: main.o util.o
 gcc -o main main.o util.o
main.o: main.c util.h
 gcc -c -g main.c
util.o: util.c util.h
 gcc -c -g util.c

Enter this into a file named makefile, and type maketo build the executable. Note that you must
precede all gcc lines with a tab. (Eight spaces will not suffice -- it must be a tab. All other lines must
be flush left.)

This makefile contains two types of lines. The lines appearing flush left are dependency lines. The
lines preceded by a tab are executable lines, which can contain any valid UNIX command. A
dependency line says that some file is dependent on some other set of files. For example, main.o:
main.c util.h says that the file main.o is dependent on the files main.c and util.h. If either of these
two files changes, the following executable line(s) should be executed to recreate main.o.

Note that the final executable produced by the whole makefile is main, on line 1 in the makefile. The
final result of the makefile should always go on line 1, which in this makefile says that the file main is
dependent on main.o and util.o. If either of these changes, execute the line gcc -o main main.o
util.o to recreate main.

It is possible to put multiple lines to be executed below a dependency line -- they must all start with a
tab. A large program may have several libraries and a main program. The makefile automatically
recompiles everything that needs to be recompiled because of a change.

If you are not working on a UNIX machine, your compiler almost certainly has functionality equivalent
to makefiles. Read the documentation for your compiler to learn how to use it.

Now you understand why you have been including stdio.h in earlier programs. It is simply a standard
library that someone created long ago and made available to other programmers to make their lives
easier.

Text Files
Text files in C are straightforward and easy to understand. All text file functions and types in C come
from the stdio library.

When you need text I/O in a C program, and you need only one source for input information and one
sink for output information, you can rely on stdin (standard in) and stdout (standard out). You can
then use input and output redirection at the command line to move different information streams
through the program. There are six different I/O commands in <stdio.h> that you can use with stdin
and stdout:

printf - prints formatted output to stdout
scanf - reads formatted input from stdin
puts - prints a string to stdout
gets - reads a string from stdin
putc - prints a character to stdout
getc, getchar - reads a character from stdin

The advantage of stdin and stdout is that they are easy to use. Likewise, the ability to redirect I/O is

Page 30 of 73Howstuffworks "How C Programming Works"

9/4/2006http://computer.howstuffworks.com/c.htm/printable

very powerful. For example, maybe you want to create a program that reads from stdin and counts the
number of characters:

#include <stdio.h>
#include <string.h>

void main()
{
 char s[1000];
 int count=0;
 while (gets(s))
 count += strlen(s);
 printf("%d\n",count);
}

Enter this code and run it. It waits for input from stdin, so type a few lines. When you are done, press
CTRL-D to signal end-of-file (eof). The gets function reads a line until it detects eof, then returns a 0
so that the while loop ends. When you press CTRL-D, you see a count of the number of characters in
stdout (the screen). (Use man gets or your compiler's documentation to learn more about the gets
function.)

Now, suppose you want to count the characters in a file. If you compiled the program to an executable
named xxx, you can type the following:

xxx < filename

Instead of accepting input from the keyboard, the contents of the file named filename will be used
instead. You can achieve the same result using pipes:

cat < filename | xxx

You can also redirect the output to a file:

xxx < filename > out

This command places the character count produced by the program in a text file named out.

Sometimes, you need to use a text file directly. For example, you might need to open a specific file
and read from or write to it. You might want to manage several streams of input or output or create a
program like a text editor that can save and recall data or configuration files on command. In that
case, use the text file functions in stdio:

fopen - opens a text file
fclose - closes a text file
feof - detects end-of-file marker in a file
fprintf - prints formatted output to a file
fscanf - reads formatted input from a file
fputs - prints a string to a file
fgets - reads a string from a file
fputc - prints a character to a file
fgetc - reads a character from a file

Text Files: Opening

Page 31 of 73Howstuffworks "How C Programming Works"

9/4/2006http://computer.howstuffworks.com/c.htm/printable

You use fopen to open a file. It opens a file for a specified mode (the three most common are r, w,
and a, for read, write, and append). It then returns a file pointer that you use to access the file. For
example, suppose you want to open a file and write the numbers 1 to 10 in it. You could use the
following code:

#include <stdio.h>
#define MAX 10

int main()
{
 FILE *f;
 int x;
 f=fopen("out","w");
 if (!f)
 return 1;
 for(x=1; x<=MAX; x++)
 fprintf(f,"%d\n",x);
 fclose(f);
 return 0;
}

The fopen statement here opens a file named out with the w mode. This is a destructive write mode,
which means that if out does not exist it is created, but if it does exist it is destroyed and a new file is
created in its place. The fopen command returns a pointer to the file, which is stored in the variable f.
This variable is used to refer to the file. If the file cannot be opened for some reason, f will contain
NULL.

The fprintf statement should look very familiar: It is just like printf but uses the file pointer as its first
parameter. The fclose statement closes the file when you are done.

Text Files: Reading
To read a file, open it with r mode. In general, it is not a good idea to use fscanf for reading: Unless
the file is perfectly formatted, fscanf will not handle it correctly. Instead, use fgets to read in each line
and then parse out the pieces you need.

Main Function Return Values
This program is the first program in this series that returns an
error value from the main program. If the fopen command fails, f
will contain a NULL value (a zero). We test for that error with the if
statement. The if statement looks at the True/False value of the
variable f. Remember that in C, 0 is False and anything else is
true. So if there were an error opening the file, f would contain
zero, which is False. The ! is the NOT operator. It inverts a
Boolean value. So the if statement could have been written like
this:

if (f == 0)

That is equivalent. However, if (!f) is more common.

If there is a file error, we return a 1 from the main function. In
UNIX, you can actually test for this value on the command line.
See the shell documentation for details.

Page 32 of 73Howstuffworks "How C Programming Works"

9/4/2006http://computer.howstuffworks.com/c.htm/printable

The following code demonstrates the process of reading a file and dumping its contents to the screen:

#include <stdio.h>

int main()
{
 FILE *f;
 char s[1000];

 f=fopen("infile","r");
 if (!f)
 return 1;
 while (fgets(s,1000,f)!=NULL)
 printf("%s",s);
 fclose(f);
 return 0;
}

The fgets statement returns a NULL value at the end-of-file marker. It reads a line (up to 1,000
characters in this case) and then prints it to stdout. Notice that the printf statement does not include \n
in the format string, because fgets adds \n to the end of each line it reads. Thus, you can tell if a line
is not complete in the event that it overflows the maximum line length specified in the second
parameter to fgets.

Pointers
Pointers are used everywhere in C, so if you want to use the C language fully you have to have a very
good understanding of pointers. They have to become comfortable for you. The goal of this section
and the next several that follow is to help you build a complete understanding of pointers and how C
uses them. For most people it takes a little time and some practice to become fully comfortable with
pointers, but once you master them you are a full-fledged C programmer.

C uses pointers in three different ways:

C uses pointers to create dynamic data structures -- data structures built up from blocks of
memory allocated from the heap at run-time.

C uses pointers to handle variable parameters passed to functions.

Pointers in C provide an alternative way to access information stored in arrays. Pointer
techniques are especially valuable when you work with strings. There is an intimate link
between arrays and pointers in C.

C Errors to Avoid

Do not accidentally type close instead of fclose. The close
function exists, so the compiler accepts it. It will even
appear to work if the program only opens or closes a few
files. However, if the program opens and closes a file in a
loop, it will eventually run out of available file handles
and/or memory space and crash, because close is not
closing the files correctly.

Page 33 of 73Howstuffworks "How C Programming Works"

9/4/2006http://computer.howstuffworks.com/c.htm/printable

In some cases, C programmers also use pointers because they make the code slightly more efficient.
What you will find is that, once you are completely comfortable with pointers, you tend to use them all
the time.

We will start this discussion with a basic introduction to pointers and the concepts surrounding
pointers, and then move on to the three techniques described above. Especially on this article, you
will want to read things twice. The first time through you can learn all the concepts. The second time
through you can work on binding the concepts together into an integrated whole in your mind. After
you make your way through the material the second time, it will make a lot of sense.

Pointers: Why?
Imagine that you would like to create a text editor -- a program that lets you edit normal ASCII text
files, like "vi" on UNIX or "Notepad" on Windows. A text editor is a fairly common thing for someone to
create because, if you think about it, a text editor is probably a programmer's most commonly used
piece of software. The text editor is a programmer's intimate link to the computer -- it is where you
enter all of your thoughts and then manipulate them. Obviously, with anything you use that often and
work with that closely, you want it to be just right. Therefore many programmers create their own
editors and customize them to suit their individual working styles and preferences.

So one day you sit down to begin working on your editor. After thinking about the features you want,
you begin to think about the "data structure" for your editor. That is, you begin thinking about how you
will store the document you are editing in memory so that you can manipulate it in your program.
What you need is a way to store the information you are entering in a form that can be manipulated
quickly and easily. You believe that one way to do that is to organize the data on the basis of lines of
characters. Given what we have discussed so far, the only thing you have at your disposal at this
point is an array. You think, "Well, a typical line is 80 characters long, and a typical file is no more
than 1,000 lines long." You therefore declare a two-dimensional array, like this:

char doc[1000][80];

This declaration requests an array of 1,000 80-character lines. This array has a total size of 80,000
characters.

As you think about your editor and its data structure some more, however, you might realize three
things:

Some documents are long lists. Every line is short, but there are thousands of lines.

Some special-purpose text files have very long lines. For example, a certain data file might
have lines containing 542 characters, with each character representing the amino acid pairs in
segments of DNA.

In most modern editors, you can open multiple files at one time.

Let's say you set a maximum of 10 open files at once, a maximum line length of 1,000 characters and
a maximum file size of 50,000 lines. Your declaration now looks like this:

char doc[50000][1000][10];

That doesn't seem like an unreasonable thing, until you pull out your calculator, multiply 50,000 by
1,000 by 10 and realize the array contains 500 million characters! Most computers today are going to
have a problem with an array that size. They simply do not have the RAM, or even the virtual memory
space, to support an array that large. If users were to try to run three or four copies of this program

Page 34 of 73Howstuffworks "How C Programming Works"

9/4/2006http://computer.howstuffworks.com/c.htm/printable

simultaneously on even the largest multi-user system, it would put a severe strain on the facilities.

Even if the computer would accept a request for such a large array, you can see that it is an
extravagant waste of space. It seems strange to declare a 500 million character array when, in the
vast majority of cases, you will run this editor to look at 100 line files that consume at most 4,000 or
5,000 bytes. The problem with an array is the fact that you have to declare it to have its maximum
size in every dimension from the beginning. Those maximum sizes often multiply together to form
very large numbers. Also, if you happen to need to be able to edit an odd file with a 2,000 character
line in it, you are out of luck. There is really no way for you to predict and handle the maximum line
length of a text file, because, technically, that number is infinite.

Pointers are designed to solve this problem. With pointers, you can create dynamic data structures.
Instead of declaring your worst-case memory consumption up-front in an array, you instead allocate
memory from the heap while the program is running. That way you can use the exact amount of
memory a document needs, with no waste. In addition, when you close a document you can return
the memory to the heap so that other parts of the program can use it. With pointers, memory can be
recycled while the program is running.

By the way, if you read the previous discussion and one of the big questions you have is, "What IS a
byte, really?," then the article How Bits and Bytes Work will help you understand the concepts, as well
as things like "mega," "giga" and "tera." Go take a look and then come back.

Pointer Basics
To understand pointers, it helps to compare them to normal variables.

A "normal variable" is a location in memory that can hold a value. For example, when you declare a
variable i as an integer, four bytes of memory are set aside for it. In your program, you refer to that
location in memory by the name i. At the machine level that location has a memory address. The four
bytes at that address are known to you, the programmer, as i, and the four bytes can hold one integer
value.

A pointer is different. A pointer is a variable that points to another variable. This means that a pointer
holds the memory address of another variable. Put another way, the pointer does not hold a value in
the traditional sense; instead, it holds the address of another variable. A pointer "points to" that other
variable by holding a copy of its address.

Because a pointer holds an address rather than a value, it has two parts. The pointer itself holds the
address. That address points to a value. There is the pointer and the value pointed to. This fact can
be a little confusing until you get comfortable with it, but once you get comfortable it becomes
extremely powerful.

The following example code shows a typical pointer:

#include <stdio.h>

int main()
{
 int i,j;
 int *p; /* a pointer to an integer */
 p = &i;
 *p=5;
 j=i;
 printf("%d %d %d\n", i, j, *p);
 return 0;

Page 35 of 73Howstuffworks "How C Programming Works"

9/4/2006http://computer.howstuffworks.com/c.htm/printable

}

The first declaration in this program declares two normal integer variables named i and j. The line int
*p declares a pointer named p. This line asks the compiler to declare a variable p that is a pointer to
an integer. The * indicates that a pointer is being declared rather than a normal variable. You can
create a pointer to anything: a float, a structure, a char, and so on. Just use a * to indicate that you
want a pointer rather than a normal variable.

The line p = &i; will definitely be new to you. In C, & is called the address operator. The expression
&i means, "The memory address of the variable i." Thus, the expression p = &i; means, "Assign to p
the address of i." Once you execute this statement, p "points to" i. Before you do so, p contains a
random, unknown address, and its use will likely cause a segmentation fault or similar program crash.

One good way to visualize what is happening is to draw a picture. After i, j and p are declared, the
world looks like this:

In this drawing the three variables i, j and p have been declared, but none of the three has been
initialized. The two integer variables are therefore drawn as boxes containing question marks -- they
could contain any value at this point in the program's execution. The pointer is drawn as a circle to
distinguish it from a normal variable that holds a value, and the random arrows indicate that it can be
pointing anywhere at this moment.

After the line p = &I;, p is initialized and it points to i, like this:

Once p points to i, the memory location i has two names. It is still known as i, but now it is known as
*p as well. This is how C talks about the two parts of a pointer variable: p is the location holding the
address, while *p is the location pointed to by that address. Therefore *p=5 means that the location
pointed to by p should be set to 5, like this:

Page 36 of 73Howstuffworks "How C Programming Works"

9/4/2006http://computer.howstuffworks.com/c.htm/printable

Because the location *p is also i, i also takes on the value 5. Consequently, j=i; sets j to 5, and the
printf statement produces 5 5 5.

The main feature of a pointer is its two-part nature. The pointer itself holds an address. The pointer
also points to a value of a specific type - the value at the address the point holds. The pointer itself, in
this case, is p. The value pointed to is *p.

Pointers: Understanding Memory Addresses
The previous discussion becomes a little clearer if you understand how memory addresses work in a
computer's hardware. If you have not read it already, now would be a good time to read How Bits and
Bytes Work to fully understand bits, bytes and words.

All computers have memory, also known as RAM (random access memory). For example, your
computer might have 16 or 32 or 64 megabytes of RAM installed right now. RAM holds the programs
that your computer is currently running along with the data they are currently manipulating (their
variables and data structures). Memory can be thought of simply as an array of bytes. In this array,
every memory location has its own address -- the address of the first byte is 0, followed by 1, 2, 3, and
so on. Memory addresses act just like the indexes of a normal array. The computer can access any
address in memory at any time (hence the name "random access memory"). It can also group bytes
together as it needs to to form larger variables, arrays, and structures. For example, a floating point
variable consumes 4 contiguous bytes in memory. You might make the following global declaration in
a program:

float f;

This statement says, "Declare a location named f that can hold one floating point value." When the
program runs, the computer reserves space for the variable f somewhere in memory. That location
has a fixed address in the memory space, like this:

The variable f consumes four bytes of RAM in memory.

That location has a specific address, in this case 248,440.

While you think of the variable f, the computer thinks of a specific address in memory (for example,

Page 37 of 73Howstuffworks "How C Programming Works"

9/4/2006http://computer.howstuffworks.com/c.htm/printable

248,440). Therefore, when you create a statement like this:

f = 3.14;

The compiler might translate that into, "Load the value 3.14 into memory location 248,440." The
computer is always thinking of memory in terms of addresses and values at those addresses.

There are, by the way, several interesting side effects to the way your computer treats memory. For
example, say that you include the following code in one of your programs:

int i, s[4], t[4], u=0;

for (i=0; i<=4; i++)
{
 s[i] = i;
 t[i] =i;
}
Printf("s:t\n");
for (i=0; i<=4; i++)
 printf("%d:%d\n", s[i], t[i]);
printf("u = %d\n", u);

The output that you see from the program will probably look like this:

s:t
1:5
2:2
3:3
4:4
5:5
u = 5

Why are t[0] and u incorrect? If you look carefully at the code, you can see that the for loops are
writing one element past the end of each array. In memory, the arrays are placed adjacent to one
another, as shown here:

Page 38 of 73Howstuffworks "How C Programming Works"

9/4/2006http://computer.howstuffworks.com/c.htm/printable

Therefore, when you try to write to s[4], which does not exist, the system writes into t[0] instead
because t[0] is where s[4] ought to be. When you write into t[4], you are really writing into u. As far as
the computer is concerned, s[4] is simply an address, and it can write into it. As you can see however,
even though the computer executes the program, it is not correct or valid. The program corrupts the
array t in the process of running. If you execute the following statement, more severe consequences
result:

s[1000000] = 5;

The location s[1000000] is more than likely outside of your program's memory space. In other words,
you are writing into memory that your program does not own. On a system with protected memory
spaces (UNIX, Windows 98/NT), this sort of statement will cause the system to terminate execution of
the program. On other systems (Windows 3.1, the Mac), however, the system is not aware of what
you are doing. You end up damaging the code or variables in another application. The effect of the
violation can range from nothing at all to a complete system crash. In memory, i, s, t and u are all
placed next to one another at specific addresses. Therefore, if you write past the boundaries of a
variable, the computer will do what you say but it will end up corrupting another memory location.

Because C and C++ do not perform any sort of range checking when you access an element of an
array, it is essential that you, as a programmer, pay careful attention to array ranges yourself and
keep within the array's appropriate boundaries. Unintentionally reading or writing outside of array
boundaries always leads to faulty program behavior.

As another example, try the following:

#include <stdio.h>

int main()
{
 int i,j;
 int *p; /* a pointer to an integer */

Page 39 of 73Howstuffworks "How C Programming Works"

9/4/2006http://computer.howstuffworks.com/c.htm/printable

 printf("%d %d\n", p, &i);
 p = &i;
 printf("%d %d\n", p, &i);
 return 0;
}

This code tells the compiler to print out the address held in p, along with the address of i. The variable
p starts off with some crazy value or with 0. The address of i is generally a large value. For example,
when I ran this code, I received the following output:

0 2147478276
2147478276 2147478276

which means that the address of i is 2147478276. Once the statement p = &i; has been executed, p
contains the address of i. Try this as well:

#include <stdio.h>

void main()
{
 int *p; /* a pointer to an integer */

 printf("%d\n",*p);
}

This code tells the compiler to print the value that p points to. However, p has not been initialized yet;
it contains the address 0 or some random address. In most cases, a segmentation fault (or some
other run-time error) results, which means that you have used a pointer that points to an invalid area
of memory. Almost always, an uninitialized pointer or a bad pointer address is the cause of
segmentation faults.

Having said all of this, we can now look at pointers in a whole new light. Take this program, for
example:

#include <stdio.h>

int main()
{
 int i;
 int *p; /* a pointer to an integer */
 p = &i;
 *p=5;
 printf("%d %d\n", i, *p);
 return 0;
}

Here is what's happening:

Page 40 of 73Howstuffworks "How C Programming Works"

9/4/2006http://computer.howstuffworks.com/c.htm/printable

The variable i consumes 4 bytes of memory. The pointer p also consumes 4 bytes (on most machines
in use today, a pointer consumes 4 bytes of memory. Memory addresses are 32-bits long on most
CPUs today, although there is a increasing trend toward 64-bit addressing). The location of i has a
specific address, in this case 248,440. The pointer p holds that address once you say p = &i;. The
variables *p and i are therefore equivalent.

The pointer p literally holds the address of i. When you say something like this in a program:

printf("%d", p);

what comes out is the actual address of the variable i.

Pointers: Pointing to the Same Address
Here is a cool aspect of C: Any number of pointers can point to the same address. For example,
you could declare p, q, and r as integer pointers and set all of them to point to i, as shown here:

int i;
int *p, *q, *r;

p = &i;
q = &i;
r = p;

Note that in this code, r points to the same thing that p points to, which is i. You can assign pointers to
one another, and the address is copied from the right-hand side to the left-hand side during the
assignment. After executing the above code, this is how things would look:

Page 41 of 73Howstuffworks "How C Programming Works"

9/4/2006http://computer.howstuffworks.com/c.htm/printable

The variable i now has four names: i, *p, *q and *r. There is no limit on the number of pointers that can
hold (and therefore point to) the same address.

Pointers: Common Bugs

Bug #1 - Uninitialized pointers
One of the easiest ways to create a pointer bug is to try to reference the value of a pointer even
though the pointer is uninitialized and does not yet point to a valid address. For example:

 int *p;

 *p = 12;

The pointer p is uninitialized and points to a random location in memory when you declare it. It could
be pointing into the system stack, or the global variables, or into the program's code space, or into the
operating system. When you say *p=12;, the program will simply try to write a 12 to whatever random
location p points to. The program may explode immediately, or may wait half an hour and then
explode, or it may subtly corrupt data in another part of your program and you may never realize it.
This can make this error very hard to track down. Make sure you initialize all pointers to a valid
address before dereferencing them.

Bug #2 - Invalid Pointer References
An invalid pointer reference occurs when a pointer's value is referenced even though the pointer
doesn't point to a valid block.

One way to create this error is to say p=q;, when q is uninitialized. The pointer p will then become
uninitialized as well, and any reference to *p is an invalid pointer reference.

The only way to avoid this bug is to draw pictures of each step of the program and make sure that all
pointers point somewhere. Invalid pointer references cause a program to crash inexplicably for the
same reasons given in Bug #1.

Bug #3 - Zero Pointer Reference
A zero pointer reference occurs whenever a pointer pointing to zero is used in a statement that
attempts to reference a block. For example, if p is a pointer to an integer, the following code is invalid:

Page 42 of 73Howstuffworks "How C Programming Works"

9/4/2006http://computer.howstuffworks.com/c.htm/printable

p = 0;
*p = 12;

There is no block pointed to by p. Therefore, trying to read or write anything from or to that block is an
invalid zero pointer reference. There are good, valid reasons to point a pointer to zero, as we will see
in later articles. Dereferencing such a pointer, however, is invalid.

All of these bugs are fatal to a program that contains them. You must watch your code so that these
bugs do not occur. The best way to do that is to draw pictures of the code's execution step by step.

Using Pointers for Function Parameters
Most C programmers first use pointers to implement something called variable parameters in
functions. You have actually been using variable parameters in the scanf function -- that's why you've
had to use the & (the address operator) on variables used with scanf. Now that you understand
pointers you can see what has really been going on.

To understand how variable parameters work, lets see how we might go about implementing a swap
function in C. To implement a swap function, what you would like to do is pass in two variables and
have the function swap their values. Here's one attempt at an implementation -- enter and execute the
following code and see what happens:

#include <stdio.h>

void swap(int i, int j)
{
 int t;

 t=i;
 i=j;
 j=t;
}

void main()
{
 int a,b;

 a=5;
 b=10;
 printf("%d %d\n", a, b);
 swap(a,b);
 printf("%d %d\n", a, b);
}

When you execute this program, you will find that no swapping takes place. The values of a and b are
passed to swap, and the swap function does swap them, but when the function returns nothing
happens.

To make this function work correctly you can use pointers, as shown below:

#include <stdio.h>

void swap(int *i, int *j)
{
 int t;

Page 43 of 73Howstuffworks "How C Programming Works"

9/4/2006http://computer.howstuffworks.com/c.htm/printable

 t = *i;
 *i = *j;
 *j = t;
}

void main()
{
 int a,b;
 a=5;
 b=10;
 printf("%d %d\n",a,b);
 swap(&a,&b);
 printf("%d %d\n",a,b);
}

To get an idea of what this code does, print it out, draw the two integers a and b, and enter 5 and 10
in them. Now draw the two pointers i and j, along with the integer t. When swap is called, it is passed
the addresses of a and b. Thus, i points to a (draw an arrow from i to a) and j points to b (draw
another arrow from b to j). Once the pointers are initialized by the function call, *i is another name for
a, and *j is another name for b. Now run the code in swap. When the code uses *i and *j, it really
means a and b. When the function completes, a and b have been swapped.

Suppose you accidentally forget the & when the swap function is called, and that the swap line
accidentally looks like this: swap(a, b);. This causes a segmentation fault. When you leave out the &,
the value of a is passed instead of its address. Therefore, i points to an invalid location in memory
and the system crashes when *i is used.

This is also why scanf crashes if you forget the & on variables passed to it. The scanf function is
using pointers to put the value it reads back into the variable you have passed. Without the &, scanf
is passed a bad address and crashes.

Variable parameters are one of the most common uses of pointers in C. Now you understand what's
happening!

Dynamic Data Structures
Dynamic data structures are data structures that grow and shrink as you need them to by allocating
and deallocating memory from a place called the heap. They are extremely important in C because
they allow the programmer to exactly control memory consumption.

Dynamic data structures allocate blocks of memory from the heap as required, and link those blocks

Page 44 of 73Howstuffworks "How C Programming Works"

9/4/2006http://computer.howstuffworks.com/c.htm/printable

together into some kind of data structure using pointers. When the data structure no longer needs a
block of memory, it will return the block to the heap for reuse. This recycling makes very efficient use
of memory.

To understand dynamic data structures completely, we need to start with the heap.

Dynamic Data Structures: The Heap
A typical personal computer or workstation today has somewhere between 16 and 64 megabytes of
RAM installed. Using a technique called virtual memory, the system can swap pieces of memory on
and off the machine's hard disk to create an illusion for the CPU that it has much more memory, for
example 200 to 500 megabytes. While this illusion is complete as far as the CPU is concerned, it can
sometimes slow things down tremendously from the user's perspective. Despite this drawback, virtual
memory is an extremely useful technique for "increasing" the amount of RAM in a machine in an
inexpensive way. Let's assume for the sake of this discussion that a typical computer has a total
memory space of, for example, 50 megabytes (regardless of whether that memory is implemented in
real RAM or in virtual memory).

The operating system on the machine is in charge of the 50-megabyte memory space. The operating
system uses the space in several different ways, as shown here:

Page 45 of 73Howstuffworks "How C Programming Works"

9/4/2006http://computer.howstuffworks.com/c.htm/printable

This is, of course, an idealization, but the basic principles are correct. As you can see, memory holds
the executable code for the different applications currently running on the machine, along with the
executable code for the operating system itself. Each application has certain global variables
associated with it. These variables also consume memory. Finally, each application uses an area of
memory called the stack, which holds all local variables and parameters used by any function. The
stack also remembers the order in which functions are called so that function returns occur correctly.
Each time a function is called, its local variables and parameters are "pushed onto" the stack. When
the function returns, these locals and parameters are "popped." Because of this, the size of a
program's stack fluctuates constantly as the program is running, but it has some maximum size.

As a program finishes execution, the operating system unloads it, its globals and its stack space from
memory. A new program can make use of that space at a later time. In this way, the memory in a
computer system is constantly "recycled" and reused by programs as they execute and complete.

In general, perhaps 50 percent of the computer's total memory space might be unused at any given
moment. The operating system owns and manages the unused memory, and it is collectively known
as the heap. The heap is extremely important because it is available for use by applications during
execution using the C functions malloc (memory allocate) and free. The heap allows programs to
allocate memory exactly when they need it during the execution of a program, rather than pre-
allocating it with a specifically-sized array declaration.

Dynamic Data Structures: Malloc and Free
Let's say that you would like to allocate a certain amount of memory during the execution of your
application. You can call the malloc function at any time, and it will request a block of memory from
the heap. The operating system will reserve a block of memory for your program, and you can use it
in any way you like. When you are done with the block, you return it to the operating system for
recycling by calling the free function. Then other applications can reserve it later for their own use.

For example, the following code demonstrates the simplest possible use of the heap:

int main()
{
 int *p;

 p = (int *)malloc(sizeof(int));
 if (p == 0)
 {
 printf("ERROR: Out of memory\n");
 return 1;
 }
 *p = 5;
 printf("&d\n", *p);
 free(p);
 return 0;
}

The first line in this program calls the malloc function. This function does three things:

The operating system and several applications, along with
their global variables and stack spaces, all consume portions
of memory. When a program completes execution, it releases
its memory for reuse by other programs. Note that part of the

memory space remains unused at any given time.

Page 46 of 73Howstuffworks "How C Programming Works"

9/4/2006http://computer.howstuffworks.com/c.htm/printable

1. The malloc statement first looks at the amount of memory available on the heap and asks, "Is
there enough memory available to allocate a block of memory of the size requested?" The
amount of memory needed for the block is known from the parameter passed into malloc -- in
this case, sizeof(int) is 4 bytes. If there is not enough memory available, the malloc function
returns the address zero to indicate the error (another name for zero is NULL and you will see it
used throughout C code). Otherwise malloc proceeds.

2. If memory is available on the heap, the system "allocates" or "reserves" a block from the heap
of the size specified. The system reserves the block of memory so that it isn't accidentally used
by more than one malloc statement.

3. The system then places into the pointer variable (p, in this case) the address of the reserved
block. The pointer variable itself contains an address. The allocated block is able to hold a
value of the type specified, and the pointer points to it.

The following diagram shows the state of memory after calling malloc:

The block on the right is the block of memory malloc allocated.

The program next checks the pointer p to make sure that the allocation request succeeded with the
line if (p == 0) (which could have also been written as if (p == NULL) or even if (!p). If the allocation
fails (if p is zero), the program terminates. If the allocation is successful, the program then initializes
the block to the value 5, prints out the value, and calls the free function to return the memory to the
heap before the program terminates.

There is really no difference between this code and previous code that sets p equal to the address of
an existing integer i. The only distinction is that, in the case of the variable i, the memory existed as
part of the program's pre-allocated memory space and had the two names: i and *p. In the case of
memory allocated from the heap, the block has the single name *p and is allocated during the
program's execution. Two common questions:

Is it really important to check that the pointer is zero after each allocation? Yes. Since the
heap varies in size constantly depending on which programs are running, how much memory
they have allocated, etc., there is never any guarantee that a call to malloc will succeed. You
should check the pointer after any call to malloc to make sure the pointer is valid.
What happens if I forget to delete a block of memory before the program terminates?
When a program terminates, the operating system "cleans up after it," releasing its executable
code space, stack, global memory space and any heap allocations for recycling. Therefore,
there are no long-term consequences to leaving allocations pending at program termination.
However, it is considered bad form, and "memory leaks" during the execution of a program are
harmful, as discussed below.

The following two programs show two different valid uses of pointers, and try to distinguish between
the use of a pointer and of the pointer's value:

void main()
{
 int *p, *q;

Page 47 of 73Howstuffworks "How C Programming Works"

9/4/2006http://computer.howstuffworks.com/c.htm/printable

 p = (int *)malloc(sizeof(int));
 q = p;
 *p = 10;
 printf("%d\n", *q);
 *q = 20;
 printf("%d\n", *q);
}

The final output of this code would be 10 from line 4 and 20 from line 6. Here's a diagram:

The following code is slightly different:

void main()
{
 int *p, *q;

 p = (int *)malloc(sizeof(int));
 q = (int *)malloc(sizeof(int));
 *p = 10;
 *q = 20;
 *p = *q;
 printf("%d\n", *p);
}

The final output from this code would be 20 from line 6. Here's a diagram:

Page 48 of 73Howstuffworks "How C Programming Works"

9/4/2006http://computer.howstuffworks.com/c.htm/printable

Notice that the compiler will allow *p = *q, because *p and *q are both integers. This statement says,
"Move the integer value pointed to by q into the integer value pointed to by p." The statement moves
the values. The compiler will also allow p = q, because p and q are both pointers, and both point to
the same type (if s is a pointer to a character, p = s is not allowed because they point to different
types). The statement p = q says, "Point p to the same block q points to." In other words, the address
pointed to by q is moved into p, so they both point to the same block. This statement moves the
addresses.

From all of these examples, you can see that there are four different ways to initialize a pointer. When
a pointer is declared, as in int *p, it starts out in the program in an uninitialized state. It may point
anywhere, and therefore to dereference it is an error. Initialization of a pointer variable involves
pointing it to a known location in memory.

1. One way, as seen already, is to use the malloc statement. This statement allocates a block of
memory from the heap and then points the pointer at the block. This initializes the pointer,
because it now points to a known location. The pointer is initialized because it has been filled
with a valid address -- the address of the new block.

2. The second way, as seen just a moment ago, is to use a statement such as p = q so that p
points to the same place as q. If q is pointing at a valid block, then p is initialized. The pointer p
is loaded with the valid address that q contains. However, if q is uninitialized or invalid, p will
pick up the same useless address.

3. The third way is to point the pointer to a known address, such as a global variable's address.
For example, if i is an integer and p is a pointer to an integer, then the statement p=&i initializes
p by pointing it to i.

4. The fourth way to initialize the pointer is to use the value zero. Zero is a special values used
with pointers, as shown here:

p = 0;

or:

Page 49 of 73Howstuffworks "How C Programming Works"

9/4/2006http://computer.howstuffworks.com/c.htm/printable

p = NULL;

What this does physically is to place a zero into p. The pointer p's address is zero. This is
normally diagrammed as:

Any pointer can be set to point to zero. When p points to zero, however, it does not point to a block.
The pointer simply contains the address zero, and this value is useful as a tag. You can use it in
statements such as:

if (p == 0)
{
 ...
}

or:

while (p != 0)
{
 ...
}

The system also recognizes the zero value, and will generate error messages if you happen to
dereference a zero pointer. For example, in the following code:

p = 0;
*p = 5;

The program will normally crash. The pointer p does not point to a block, it points to zero, so a value
cannot be assigned to *p. The zero pointer will be used as a flag when we get to linked lists.

The malloc command is used to allocate a block of memory. It is also possible to deallocate a block of
memory when it is no longer needed. When a block is deallocated, it can be reused by a subsequent
malloc command, which allows the system to recycle memory. The command used to deallocate
memory is called free, and it accepts a pointer as its parameter. The free command does two things:

1. The block of memory pointed to by the pointer is unreserved and given back to the free
memory on the heap. It can then be reused by later new statements.

2. The pointer is left in an uninitialized state, and must be reinitialized before it can be used again.

The free statement simply returns a pointer to its original uninitialized state and makes the block
available again on the heap.

The following example shows how to use the heap. It allocates an integer block, fills it, writes it, and
disposes of it:

#include <stdio.h>

Page 50 of 73Howstuffworks "How C Programming Works"

9/4/2006http://computer.howstuffworks.com/c.htm/printable

int main()
{
 int *p;
 p = (int *)malloc (sizeof(int));
 *p=10;
 printf("%d\n",*p);
 free(p);
 return 0;
}

This code is really useful only for demonstrating the process of allocating, deallocating, and using a
block in C. The malloc line allocates a block of memory of the size specified -- in this case, sizeof
(int) bytes (4 bytes). The sizeof command in C returns the size, in bytes, of any type. The code could
just as easily have said malloc(4), since sizeof(int) equals 4 bytes on most machines. Using sizeof,
however, makes the code much more portable and readable.

The malloc function returns a pointer to the allocated block. This pointer is generic. Using the pointer
without typecasting generally produces a type warning from the compiler. The (int *) typecast
converts the generic pointer returned by malloc into a "pointer to an integer," which is what p expects.
The free statement in C returns a block to the heap for reuse.

The second example illustrates the same functions as the previous example, but it uses a structure
instead of an integer. In C, the code looks like this:

#include <stdio.h>

struct rec
{
 int i;
 float f;
 char c;
};

int main()
{
 struct rec *p;
 p=(struct rec *) malloc (sizeof(struct rec));
 (*p).i=10;
 (*p).f=3.14;
 (*p).c='a';
 printf("%d %f %c\n",(*p).i,(*p).f,(*p).c);
 free(p);
 return 0;
}

Note the following line:

(*p).i=10;

Many wonder why the following doesn't work:

*p.i=10;

Page 51 of 73Howstuffworks "How C Programming Works"

9/4/2006http://computer.howstuffworks.com/c.htm/printable

The answer has to do with the precedence of operators in C. The result of the calculation 5+3*4 is 17,
not 32, because the * operator has higher precedence than + in most computer languages. In C, the .
operator has higher precedence than *, so parentheses force the proper precedence.

Most people tire of typing (*p).i all the time, so C provides a shorthand notation. The following two
statements are exactly equivalent, but the second is easier to type:

(*p).i=10;
p->i=10;

You will see the second more often than the first when reading other people's code.

Advanced Pointers
You will normally use pointers in somewhat more complicated ways than those shown in some of the
previous examples. For example, it is much easier to create a normal integer and work with it than it is
to create and use a pointer to an integer. In this section, some of the more common and advanced
ways of working with pointers will be explored.

Pointer Types
It is possible, legal, and beneficial to create pointer types in C, as shown below:

typedef int *IntPointer;
...
IntPointer p;

This is the same as saying:

int *p;

This technique will be used in many of the examples on the following pages. The technique often
makes a data declaration easier to read and understand, and also makes it easier to include pointers
inside of structures or pass pointer parameters in functions.

Pointers to Structures
It is possible to create a pointer to almost any type in C, including user-defined types. It is extremely
common to create pointers to structures. An example is shown below:

typedef struct
{
 char name[21];
 char city[21];
 char state[3];
} Rec;
typedef Rec *RecPointer;

RecPointer r;
r = (RecPointer)malloc(sizeof(Rec));

Page 52 of 73Howstuffworks "How C Programming Works"

9/4/2006http://computer.howstuffworks.com/c.htm/printable

The pointer r is a pointer to a structure. Please note the fact that r is a pointer, and therefore takes
four bytes of memory just like any other pointer. However, the malloc statement allocates 45 bytes of
memory from the heap. *r is a structure just like any other structure of type Rec. The following code
shows typical uses of the pointer variable:

strcpy((*r).name, "Leigh");
strcpy((*r).city, "Raleigh");
strcpy((*r).state, "NC");
printf("%s\n", (*r).city);
free(r);

You deal with *r just like a normal structure variable, but you have to be careful with the precedence
of operators in C. If you were to leave off the parenthesis around *r the code would not compile
because the "." operator has a higher precedence than the "*" operator. Because it gets tedious to
type so many parentheses when working with pointers to structures, C includes a shorthand notation
that does exactly the same thing:

strcpy(r->name, "Leigh");

The r-> notation is exactly equivalent to (*r)., but takes two fewer characters.

Pointers to Arrays
It is also possible to create pointers to arrays, as shown below:

 int *p;
 int i;

 p = (int *)malloc(sizeof(int[10]));
 for (i=0; i<10; i++)
 p[i] = 0;
 free(p);

or:

 int *p;
 int i;

 p = (int *)malloc(sizeof(int[10]));
 for (i=0; i<10; i++)
 *(p+i) = 0;
 free(p);

Page 53 of 73Howstuffworks "How C Programming Works"

9/4/2006http://computer.howstuffworks.com/c.htm/printable

Note that when you create a pointer to an integer array, you simply create a normal pointer to int. The
call to malloc allocates an array of whatever size you desire, and the pointer points to that array's first
element. You can either index through the array pointed to by p using normal array indexing, or you
can do it using pointer arithmetic. C sees both forms as equivalent.

This particular technique is extremely useful when working with strings. It lets you allocate enough
storage to exactly hold a string of a particular size.

Arrays of Pointers
Sometimes a great deal of space can be saved, or certain memory-intensive problems can be solved,
by declaring an array of pointers. In the example code below, an array of 10 pointers to structures is
declared, instead of declaring an array of structures. If an array of the structures had been created
instead, 243 * 10 = 2,430 bytes would have been required for the array. Using the array of pointers
allows the array to take up minimal space until the actual records are allocated with malloc
statements. The code below simply allocates one record, places a value in it, and disposes of the
record to demonstrate the process:

 typedef struct
 {
 char s1[81];
 char s2[81];
 char s3[81];
 } Rec;
 Rec *a[10];

 a[0] = (Rec *)malloc(sizeof(Rec));
 strcpy(a[0]->s1, "hello");
 free(a[0]);

Page 54 of 73Howstuffworks "How C Programming Works"

9/4/2006http://computer.howstuffworks.com/c.htm/printable

Structures Containing Pointers
Structures can contain pointers, as shown below:

 typedef struct
 {
 char name[21];
 char city[21];
 char phone[21];
 char *comment;
 } Addr;
 Addr s;
 char comm[100];

 gets(s.name, 20);
 gets(s.city, 20);
 gets(s.phone, 20);
 gets(comm, 100);
 s.comment =
 (char *)malloc(sizeof(char[strlen(comm)+1]));
 strcpy(s.comment, comm);

This technique is useful when only some records actually contained a comment in the comment field.
If there is no comment for the record, then the comment field would consist only of a pointer (4 bytes).

Page 55 of 73Howstuffworks "How C Programming Works"

9/4/2006http://computer.howstuffworks.com/c.htm/printable

Those records having a comment then allocate exactly enough space to hold the comment string,
based on the length of the string typed by the user.

Pointers to Pointers
It is possible and often useful to create pointers to pointers. This technique is sometimes called a
handle, and is useful in certain situations where the operating system wants to be able to move
blocks of memory on the heap around at its discretion. The following example demonstrates a pointer
to a pointer:

 int **p;
 int *q;

 p = (int **)malloc(sizeof(int *));
 *p = (int *)malloc(sizeof(int));
 **p = 12;
 q = *p;
 printf("%d\n", *q);
 free(q);
 free(p);

Windows and the Mac OS use this structure to allow memory compaction on the heap. The program
manages the pointer p, while the operating system manages the pointer *p. Because the OS
manages *p, the block pointed to by *p (**p) can be moved, and *p can be changed to reflect the
move without affecting the program using p. Pointers to pointers are also frequently used in C to
handle pointer parameters in functions.

Pointers to Structures Containing Pointers
It is also possible to create pointers to structures that contain pointers. The following example uses
the Addr record from the previous section:

 typedef struct
 {
 char name[21];
 char city[21];
 char phone[21];
 char *comment;
 } Addr;
 Addr *s;
 char comm[100];

 s = (Addr *)malloc(sizeof(Addr));

Page 56 of 73Howstuffworks "How C Programming Works"

9/4/2006http://computer.howstuffworks.com/c.htm/printable

 gets(s->name, 20);
 gets(s->city, 20);
 gets(s->phone, 20);
 gets(comm, 100);
 s->comment =
 (char *)malloc(sizeof(char[strlen(comm)+1]));
 strcpy(s->comment, comm);

The pointer s points to a structure that contains a pointer that points to a string:

In this example, it is very easy to create lost blocks if you aren't careful. For example, here is a
different version of the AP example.

 s = (Addr *)malloc(sizeof(Addr));
 gets(comm, 100);
 s->comment =
 (char *)malloc(sizeof(char[strlen(comm)+1]));
 strcpy(s->comment, comm);
 free(s);

This code creates a lost block because the structure containing the pointer pointing to the string is
disposed of before the string block is disposed of, as shown below:

Linking
Finally, it is possible to create structures that are able to point to identical structures, and this
capability can be used to link together a whole string of identical records in a structure called a linked
list.

 typedef struct
 {
 char name[21];
 char city[21];
 char state[21];

Page 57 of 73Howstuffworks "How C Programming Works"

9/4/2006http://computer.howstuffworks.com/c.htm/printable

 Addr *next;
 } Addr;
 Addr *first;

The compiler will let you do this, and it can be used with a little experience to create structures like the
one shown below:

A Linked Stack Example
A good example of dynamic data structures is a simple stack library, one that uses a dynamic list and
includes functions to init, clear, push, and pop. The library's header file looks like this:

/* Stack Library - This library offers the
 minimal stack operations for a
 stack of integers (easily changeable) */

typedef int stack_data;

extern void stack_init();
/* Initializes this library.
 Call first before calling anything. */

extern void stack_clear();
/* Clears the stack of all entries. */

extern int stack_empty();
/* Returns 1 if the stack is empty, 0 otherwise. */

extern void stack_push(stack_data d);
/* Pushes the value d onto the stack. */

extern stack_data stack_pop();
/* Returns the top element of the stack,
 and removes that element.
 Returns garbage if the stack is empty. */

The library's code file follows:

#include "stack.h"
#include <stdio.h>

/* Stack Library - This library offers the
 minimal stack operations for a stack of integers */

Page 58 of 73Howstuffworks "How C Programming Works"

9/4/2006http://computer.howstuffworks.com/c.htm/printable

struct stack_rec
{
 stack_data data;
 struct stack_rec *next;
};

struct stack_rec *top=NULL;

void stack_init()
/* Initializes this library.
 Call before calling anything else. */
{
 top=NULL;
}

void stack_clear()
/* Clears the stack of all entries. */
{
 stack_data x;

 while (!stack_empty())
 x=stack_pop();
}

int stack_empty()
/* Returns 1 if the stack is empty, 0 otherwise. */
{
 if (top==NULL)
 return(1);
 else
 return(0);
}

void stack_push(stack_data d)
/* Pushes the value d onto the stack. */
{
 struct stack_rec *temp;
 temp=
 (struct stack_rec *)malloc(sizeof(struct stack_rec));
 temp->data=d;
 temp->next=top;
 top=temp;
}

stack_data stack_pop()
/* Returns the top element of the stack,
 and removes that element.
 Returns garbage if the stack is empty. */
{
 struct stack_rec *temp;
 stack_data d=0;
 if (top!=NULL)
 {
 d=top->data;
 temp=top;
 top=top->next;

Page 59 of 73Howstuffworks "How C Programming Works"

9/4/2006http://computer.howstuffworks.com/c.htm/printable

 free(temp);
 }
 return(d);
}

Note how this library practices information hiding: Someone who can see only the header file cannot
tell if the stack is implemented with arrays, pointers, files, or in some other way. Note also that C uses
NULL. NULL is defined in stdio.h, so you will almost always have to include stdio.h when you use
pointers. NULL is the same as zero.

Using Pointers with Arrays
Arrays and pointers are intimately linked in C. To use arrays effectively, you have to know how to use
pointers with them. Fully understanding the relationship between the two probably requires several
days of study and experimentation, but it is well worth the effort.

Let's start with a simple example of arrays in C:

#define MAX 10

int main()
{
 int a[MAX];
 int b[MAX];
 int i;
 for(i=0; i<MAX; i++)
 a[i]=i;
 b=a;
 return 0;

Try This!

Add a dup, a count, and an add function to the stack
library to duplicate the top element of the stack, return a
count of the number of elements in the stack, and add the
top two elements in the stack.
Build a driver program and a makefile, and compile the
stack library with the driver to make sure it works.

C Errors to Avoid

Forgetting to include parentheses when you reference a
record, as in (*p).i above
Failing to dispose of any block you allocate - For example,
you should not say top=NULL in the stack function,
because that action orphans blocks that need to be
disposed.
Forgetting to include stdio.h with any pointer operations so
that you have access to NULL.

Page 60 of 73Howstuffworks "How C Programming Works"

9/4/2006http://computer.howstuffworks.com/c.htm/printable

}

Enter this code and try to compile it. You will find that C will not compile it. If you want to copy a into b,
you have to enter something like the following instead:

for (i=0; i<MAX; i++)
 b[i]=a[i];

Or, to put it more succinctly:

for (i=0; i<MAX; b[i]=a[i], i++);

Better yet, use the memcpy utility in string.h.

Arrays in C are unusual in that variables a and b are not, technically, arrays themselves. Instead they
are permanent pointers to arrays. a and b permanently point to the first elements of their respective
arrays -- they hold the addresses of a[0] and b[0] respectively. Since they are permanent pointers
you cannot change their addresses. The statement a=b; therefore does not work.

Because a and b are pointers, you can do several interesting things with pointers and arrays. For
example, the following code works:

#define MAX 10

void main()
{
 int a[MAX];
 int i;
 int *p;

 p=a;
 for(i=0; i<MAX; i++)
 a[i]=i;
 printf("%d\n",*p);
}

The statement p=a; works because a is a pointer. Technically, a points to the address of the 0th
element of the actual array. This element is an integer, so a is a pointer to a single integer. Therefore,
declaring p as a pointer to an integer and setting it equal to a works. Another way to say exactly the
same thing would be to replace p=a; with p=&a[0];. Since a contains the address of a[0], a and &a[0]
mean the same thing.

The following figure shows the state of the variables right before the for loop starts executing:

Page 61 of 73Howstuffworks "How C Programming Works"

9/4/2006http://computer.howstuffworks.com/c.htm/printable

Now that p is pointing at the 0th element of a, you can do some rather strange things with it. The a
variable is a permanent pointer and can not be changed, but p is not subject to such restrictions. C
actually encourages you to move it around using pointer arithmetic . For example, if you say p++;, the
compiler knows that p points to an integer, so this statement increments p the appropriate number of
bytes to move it to the next element of the array. If p were pointing to an array of 100-byte-long
structures, p++; would move p over by 100 bytes. C takes care of the details of element size.

You can copy the array a into b using pointers as well. The following code can replace (for i=0;
i<MAX; a[i]=b[i], i++); :

p=a;
q=b;
for (i=0; i<MAX; i++)
{
 *q = *p;
 q++;
 p++;
}

You can abbreviate this code as follows:

p=a;
q=b;
for (i=0; i<MAX; i++)
 *q++ = *p++;

And you can further abbreviate it to:

for (p=a,q=b,i=0; i<MAX; *q++ = *p++, i++);

What if you go beyond the end of the array a or b with the pointers p or q? C does not care -- it
blithely goes along incrementing p and q, copying away over other variables with abandon. You need
to be careful when indexing into arrays in C, because C assumes that you know what you are doing.

You can pass an array such as a or b to a function in two different ways. Imagine a function dump
that accepts an array of integers as a parameter and prints the contents of the array to stdout. There
are two ways to code dump:

void dump(int a[],int nia)
{

Page 62 of 73Howstuffworks "How C Programming Works"

9/4/2006http://computer.howstuffworks.com/c.htm/printable

 int i;
 for (i=0; i<nia; i++)
 printf("%d\n",a[i]);
}

or:

void dump(int *p,int nia)
{
 int i;
 for (i=0; i<nia; i++)
 printf("%d\n",*p++);
}

The nia (number_in_array) variable is required so that the size of the array is known. Note that only a
pointer to the array, rather than the contents of the array, is passed to the function. Also note that C
functions can accept variable-size arrays as parameters.

Strings
Strings in C are intertwined with pointers to a large extent. You must become familiar with the pointer
concepts covered in the previous articles to use C strings effectively. Once you get used to them,
however, you can often perform string manipulations very efficiently.

A string in C is simply an array of characters. The following line declares an array that can hold a
string of up to 99 characters.

char str[100];

It holds characters as you would expect: str[0] is the first character of the string, str[1] is the second
character, and so on. But why is a 100-element array unable to hold up to 100 characters? Because
C uses null-terminated strings, which means that the end of any string is marked by the ASCII value 0
(the null character), which is also represented in C as '\0'.

Null termination is very different from the way many other languages handle strings. For example, in
Pascal, each string consists of an array of characters, with a length byte that keeps count of the
number of characters stored in the array. This structure gives Pascal a definite advantage when you
ask for the length of a string. Pascal can simply return the length byte, whereas C has to count the
characters until it finds '\0'. This fact makes C much slower than Pascal in certain cases, but in others
it makes it faster, as we will see in the examples below.

Because C provides no explicit support for strings in the language itself, all of the string-handling
functions are implemented in libraries. The string I/0 operations (gets, puts, and so on) are
implemented in <stdio.h>, and a set of fairly simple string manipulation functions are implemented in
<string.h> (on some systems, <strings.h>).

The fact that strings are not native to C forces you to create some fairly roundabout code. For
example, suppose you want to assign one string to another string; that is, you want to copy the
contents of one string to another. In C, as we saw in the last article, you cannot simply assign one
array to another. You have to copy it element by element. The string library (<string.h> or
<strings.h>) contains a function called strcpy for this task. Here is an extremely common piece of
code to find in a normal C program:

char s[100];

Page 63 of 73Howstuffworks "How C Programming Works"

9/4/2006http://computer.howstuffworks.com/c.htm/printable

strcpy(s, "hello");

After these two lines execute, the following diagram shows the contents of s:

The top diagram shows the array with its characters. The bottom diagram shows the equivalent ASCII
code values for the characters, and is how C actually thinks about the string (as an array of bytes
containing integer values). See How Bits and Bytes Work for a discussion of ASCII codes.

The following code shows how to use strcpy in C:

#include <string.h>
int main()
{
 char s1[100],s2[100];
 strcpy(s1,"hello"); /* copy "hello" into s1 */
 strcpy(s2,s1); /* copy s1 into s2 */
 return 0;
}

strcpy is used whenever a string is initialized in C. You use the strcmp function in the string library to
compare two strings. It returns an integer that indicates the result of the comparison. Zero means the
two strings are equal, a negative value means that s1 is less than s2, and a positive value means s1
is greater than s2.

#include <stdio.h>
#include <string.h>
int main()
{
 char s1[100],s2[100];
 gets(s1);
 gets(s2);
 if (strcmp(s1,s2)==0)
 printf("equal\n");
 else if (strcmp(s1,s2)<0)
 printf("s1 less than s2\n");
 else
 printf("s1 greater than s2\n");
 return 0;
}

Other common functions in the string library include strlen, which returns the length of a string, and
strcat which concatenates two strings. The string library contains a number of other functions, which

Page 64 of 73Howstuffworks "How C Programming Works"

9/4/2006http://computer.howstuffworks.com/c.htm/printable

you can peruse by reading the man page.

To get you started building string functions, and to help you understand other programmers' code
(everyone seems to have his or her own set of string functions for special purposes in a program), we
will look at two examples, strlen and strcpy. Following is a strictly Pascal-like version of strlen:

int strlen(char s[])
{
 int x;
 x=0;
 while (s[x] != '\0')
 x=x+1;
 return(x);
}

Most C programmers shun this approach because it seems inefficient. Instead, they often use a
pointer-based approach:

int strlen(char *s)
{
 int x=0;
 while (*s != '\0')
 {
 x++;
 s++;
 }
 return(x);
}

You can abbreviate this code to the following:

int strlen(char *s)
{
 int x=0;
 while (*s++)
 x++;
 return(x);
}

I imagine a true C expert could make this code even shorter.

When I compile these three pieces of code on a MicroVAX with gcc, using no optimization, and run
each 20,000 times on a 120-character string, the first piece of code yields a time of 12.3 seconds, the
second 12.3 seconds, and the third 12.9 seconds. What does this mean? To me, it means that you
should write the code in whatever way is easiest for you to understand. Pointers generally yield faster
code, but the strlen code above shows that that is not always the case.

We can go through the same evolution with strcpy:

strcpy(char s1[],char s2[])
{
 int x;
 for (x=0; x<=strlen(s2); x++)
 s1[x]=s2[x];

Page 65 of 73Howstuffworks "How C Programming Works"

9/4/2006http://computer.howstuffworks.com/c.htm/printable

}

Note here that <= is important in the for loop because the code then copies the '\0'. Be sure to copy
'\0'. Major bugs occur later on if you leave it out, because the string has no end and therefore an
unknown length. Note also that this code is very inefficient, because strlen gets called every time
through the for loop. To solve this problem, you could use the following code:

strcpy(char s1[],char s2[])
{
 int x,len;
 len=strlen(s2);
 for (x=0; x<=len; x++)
 s1[x]=s2[x];
}

The pointer version is similar.

strcpy(char *s1,char *s2)
{
 while (*s2 != '\0')
 {
 *s1 = *s2;
 s1++;
 s2++;
 }
}

You can compress this code further:

strcpy(char *s1,char *s2)
{
 while (*s2)
 *s1++ = *s2++;
}

If you wish, you can even say while (*s1++ = *s2++);. The first version of strcpy takes 415 seconds
to copy a 120-character string 10,000 times, the second version takes 14.5 seconds, the third version
9.8 seconds, and the fourth 10.3 seconds. As you can see, pointers provide a significant performance
boost here.

The prototype for the strcpy function in the string library indicates that it is designed to return a
pointer to a string:

char *strcpy(char *s1,char *s2)

Most of the string functions return a string pointer as a result, and strcpy returns the value of s1 as its
result.

Using pointers with strings can sometimes result in definite improvements in speed and you can take
advantage of these if you think about them a little. For example, suppose you want to remove the
leading blanks from a string. You might be inclined to shift characters over on top of the blanks to
remove them. In C, you can avoid the movement altogether:

#include <stdio.h>

Page 66 of 73Howstuffworks "How C Programming Works"

9/4/2006http://computer.howstuffworks.com/c.htm/printable

#include <string.h>

int main()
{
 char s[100],*p;
 gets(s);
 p=s;
 while (*p==' ')
 p++;
 printf("%s\n",p);
 return 0;
}

This is much faster than the movement technique, especially for long strings.

You will pick up many other tricks with strings as you go along and read other code. Practice is the
key.

Special Note on Strings

Special Note on String Constants
Suppose you create the following two code fragments and run them:

Fragment 1

{
 char *s;

 s="hello";
 printf("%s\n",s);
}

Fragment 2

{
 char s[100];

 strcpy(s,"hello");
 printf("%s\n",s);
}

These two fragments produce the same output, but their internal behavior is quite different. In
fragment 2, you cannot say s="hello";. To understand the differences, you have to understand how
the string constant table works in C.

When your program is compiled, the compiler forms the object code file, which contains your machine
code and a table of all the string constants declared in the program. In fragment 1, the statement
s="hello"; causes s to point to the address of the string hello in the string constant table. Since this
string is in the string constant table, and therefore technically a part of the executable code, you
cannot modify it. You can only point to it and use it in a read-only manner.

In fragment 2, the string hello also exists in the constant table, so you can copy it into the array of
characters named s. Since s is not a pointer, the statement s="hello"; will not work in fragment 2. It
will not even compile.

Page 67 of 73Howstuffworks "How C Programming Works"

9/4/2006http://computer.howstuffworks.com/c.htm/printable

Special Note on Using Strings with malloc
Suppose you write the following program:

int main()
{
 char *s;

 s=(char *) malloc (100);
 s="hello";
 free(s);
 return 0;
}

It compiles properly, but gives a segmentation fault at the free line when you run it. The malloc line
allocates a block 100 bytes long and points s at it, but now the s="hello"; line is a problem. It is
syntactically correct because s is a pointer; however, when s="hello"; is executed, s points to the
string in the string constant table and the allocated block is orphaned. Since s is pointing into the
string constant table, the string cannot be changed; free fails because it cannot deallocate a block in
an executable region.

The correct code follows:

int main()
{
 char *s;
 s=(char *) malloc (100);
 strcpy(s,"hello");
 free(s);
 return 0;
}

Operator Precedence

Try This!

Create a program that reads in a string containing a first
name followed by a blank followed by a last name. Write
functions to remove any leading or trailing blanks. Write
another function that returns the last name.
Write a function that converts a string to uppercase.
Write a function that gets the first word from a string and
returns the remainder of the string.

C Error to Avoid
Losing the \0 character, which is easy if you aren't careful, can
lead to some very subtle bugs. Make sure you copy \0 when you
copy strings. If you create a new string, make sure you put \0 in it.
And if you copy one string to another, make sure the receiving
string is big enough to hold the source string, including \0. Finally,
if you point a character pointer to some characters, make sure
they end with \0.

Page 68 of 73Howstuffworks "How C Programming Works"

9/4/2006http://computer.howstuffworks.com/c.htm/printable

C contains many operators, and because of the way in which operator precedence works, the
interactions between multiple operators can become confusing.

x=5+3*6;

X receives the value 23, not 48, because in C multiplication and division have higher precedence than
addition and subtraction.

char *a[10];

Is a a single pointer to an array of 10 characters, or is it an array of 10 pointers to character? Unless
you know the precedence conventions in C, there is no way to find out. Similarly, in E.11 we saw that
because of precedence statements such as *p.i = 10; do not work. Instead, the form (*p).i = 10; must
be used to force correct precedence.

The following table from C Programming Language, by Kernighan and Ritchie, shows the precedence
hierarchy in C. The top line has the highest precedence.

Operators Associativity
([- . Left to right
! - ++ -{- + * & (type-cast) sizeof Right to left
(in the above line, +, - and * are the unary forms)
* / % Left to right
+ - Left to right
<< >> Left to right
< <= > >= Left to right
== != Left to right
& Left to right
^ Left to right
| Left to right
&& Left to right
|| Left to right
?: Left to right
= += -= *= /= %= &= ^= |= <<= >>= Right to left
, Left to right

Using this table, you can see that char *a[10]; is an array of 10 pointers to character. You can also
see why the parentheses are required if (*p).i is to be handled correctly. After some practice, you will
memorize most of this table, but every now and again something will not work because you have
been caught by a subtle precedence problem.

Command Line Arguments
C provides a fairly simple mechanism for retrieving command line parameters entered by the user. It
passes an argv parameter to the main function in the program. argv structures appear in a fair
number of the more advanced library calls, so understanding them is useful to any C programmer.

Enter the following code and compile it:

#include <stdio.h>

int main(int argc, char *argv[])
{
 int x;

Page 69 of 73Howstuffworks "How C Programming Works"

9/4/2006http://computer.howstuffworks.com/c.htm/printable

 printf("%d\n",argc);
 for (x=0; x<argc; x++)
 printf("%s\n",argv[x]);
 return 0;
}

In this code, the main program accepts two parameters, argv and argc. The argv parameter is an
array of pointers to string that contains the parameters entered when the program was invoked at the
UNIX command line. The argc integer contains a count of the number of parameters. This particular
piece of code types out the command line parameters. To try this, compile the code to an executable
file named aaa and type aaa xxx yyy zzz. The code will print the command line parameters xxx, yyy
and zzz, one per line.

The char *argv[] line is an array of pointers to string. In other words, each element of the array is a
pointer, and each pointer points to a string (technically, to the first character of the string). Thus, argv
[0] points to a string that contains the first parameter on the command line (the program's name),
argv[1] points to the next parameter, and so on. The argc variable tells you how many of the pointers
in the array are valid. You will find that the preceding code does nothing more than print each of the
valid strings pointed to by argv.

Because argv exists, you can let your program react to command line parameters entered by the user
fairly easily. For example, you might have your program detect the word help as the first parameter
following the program name, and dump a help file to stdout. File names can also be passed in and
used in your fopen statements.

Binary Files
Binary files are very similar to arrays of structures, except the structures are in a disk file rather than in
an array in memory. Because the structures in a binary file are on disk, you can create very large
collections of them (limited only by your available disk space). They are also permanent and always
available. The only disadvantage is the slowness that comes from disk access time.

Binary files have two features that distinguish them from text files:

You can jump instantly to any structure in the file, which provides random access as in an
array.
You can change the contents of a structure anywhere in the file at any time.

Binary files also usually have faster read and write times than text files, because a binary image of the
record is stored directly from memory to disk (or vice versa). In a text file, everything has to be
converted back and forth to text, and this takes time.

C supports the file-of-structures concept very cleanly. Once you open the file you can read a
structure, write a structure, or seek to any structure in the file. This file concept supports the concept
of a file pointer. When the file is opened, the pointer points to record 0 (the first record in the file).
Any read operation reads the currently pointed-to structure and moves the pointer down one
structure. Any write operation writes to the currently pointed-to structure and moves the pointer down
one structure. Seek moves the pointer to the requested record.

Keep in mind that C thinks of everything in the disk file as blocks of bytes read from disk into memory
or read from memory onto disk. C uses a file pointer, but it can point to any byte location in the file.
You therefore have to keep track of things.

The following program illustrates these concepts:

Page 70 of 73Howstuffworks "How C Programming Works"

9/4/2006http://computer.howstuffworks.com/c.htm/printable

#include <stdio.h>

/* random record description - could be anything */
struct rec
{
 int x,y,z;
};

/* writes and then reads 10 arbitrary records
 from the file "junk". */
int main()
{
 int i,j;
 FILE *f;
 struct rec r;

 /* create the file of 10 records */
 f=fopen("junk","w");
 if (!f)
 return 1;
 for (i=1;i<=10; i++)
 {
 r.x=i;
 fwrite(&r,sizeof(struct rec),1,f);
 }
 fclose(f);

 /* read the 10 records */
 f=fopen("junk","r");
 if (!f)
 return 1;
 for (i=1;i<=10; i++)
 {
 fread(&r,sizeof(struct rec),1,f);
 printf("%d\n",r.x);
 }
 fclose(f);
 printf("\n");

 /* use fseek to read the 10 records
 in reverse order */
 f=fopen("junk","r");
 if (!f)
 return 1;
 for (i=9; i>=0; i--)
 {
 fseek(f,sizeof(struct rec)*i,SEEK_SET);
 fread(&r,sizeof(struct rec),1,f);
 printf("%d\n",r.x);
 }
 fclose(f);
 printf("\n");

 /* use fseek to read every other record */
 f=fopen("junk","r");
 if (!f)

Page 71 of 73Howstuffworks "How C Programming Works"

9/4/2006http://computer.howstuffworks.com/c.htm/printable

 return 1;
 fseek(f,0,SEEK_SET);
 for (i=0;i<5; i++)
 {
 fread(&r,sizeof(struct rec),1,f);
 printf("%d\n",r.x);
 fseek(f,sizeof(struct rec),SEEK_CUR);
 }
 fclose(f);
 printf("\n");

 /* use fseek to read 4th record,
 change it, and write it back */
 f=fopen("junk","r+");
 if (!f)
 return 1;
 fseek(f,sizeof(struct rec)*3,SEEK_SET);
 fread(&r,sizeof(struct rec),1,f);
 r.x=100;
 fseek(f,sizeof(struct rec)*3,SEEK_SET);
 fwrite(&r,sizeof(struct rec),1,f);
 fclose(f);
 printf("\n");

 /* read the 10 records to insure
 4th record was changed */
 f=fopen("junk","r");
 if (!f)
 return 1;
 for (i=1;i<=10; i++)
 {
 fread(&r,sizeof(struct rec),1,f);
 printf("%d\n",r.x);
 }
 fclose(f);
 return 0;
}

In this program, a structure description rec has been used, but you can use any structure description
you want. You can see that fopen and fclose work exactly as they did for text files.

The new functions here are fread, fwrite and fseek. The fread function takes four parameters:

A memory address
The number of bytes to read per block
The number of blocks to read
The file variable

Thus, the line fread(&r,sizeof(struct rec),1,f); says to read 12 bytes (the size of rec) from the file f
(from the current location of the file pointer) into memory address &r. One block of 12 bytes is
requested. It would be just as easy to read 100 blocks from disk into an array in memory by changing
1 to 100.

The fwrite function works the same way, but moves the block of bytes from memory to the file. The
fseek function moves the file pointer to a byte in the file. Generally, you move the pointer in sizeof

Page 72 of 73Howstuffworks "How C Programming Works"

9/4/2006http://computer.howstuffworks.com/c.htm/printable

(struct rec) increments to keep the pointer at record boundaries. You can use three options when
seeking:

SEEK_SET
SEEK_CUR
SEEK_END

SEEK_SET moves the pointer x bytes down from the beginning of the file (from byte 0 in the file).
SEEK_CUR moves the pointer x bytes down from the current pointer position. SEEK_END moves the
pointer from the end of the file (so you must use negative offsets with this option).

Several different options appear in the code above. In particular, note the section where the file is
opened with r+ mode. This opens the file for reading and writing, which allows records to be changed.
The code seeks to a record, reads it, and changes a field; it then seeks back because the read
displaced the pointer, and writes the change back.

For more information on C and related topics, check out the links on the next page.

Lots More Information

Related HowStuffWorks Articles

How Boolean Logic Works
How Java Works
How CGI Scripting Works
How PERL Works
How BIOS Works
How Bits and Bytes Work

Cprogramming.com: Programming Tutorials
C Program Development Cycle
Introduction to Object-Oriented Programming Using C++
C Programming
comp.lang.c Frequently Asked Questions

More Great Links

 Home Store Newsletter Search Advertising Privacy Terms and Conditions Contact About Help

 © 1998 - 2006 HowStuffWorks, Inc.

Page 73 of 73Howstuffworks "How C Programming Works"

9/4/2006http://computer.howstuffworks.com/c.htm/printable

