
Asynchronous (ripple) counters

Basic idea of counters

Asynchronous (ripple) counter using JK flip-flops

counting through binary power (e.g. 24 = 16 states, 0–15)

counting through an arbitrary range (e.g. 0–9, decade counter)

Effect of propagation delay

causes clock to ‘ripple’ through counter

causes the system to pass through wrong states (briefly)

hence ripple counters are used only for undemanding applications
where the timing is not critical

Other types of asynchronous counters can also be made

down counters, for example

J K Qn Qn+1 description

0 0
0 0

1 1

0 1 X 0

1 0 X 1

0 1
1 1

1 0

hold

clear

set

toggle

0 0 0

ABC

1

0

1

0

1

0

1

0

1

1

0

0

1

1

0

0

0

1

1

1

1

0 0 0

Counters are one of the simplest digital systems. The binary
counting sequence is shown on the right.

Each flip-flop changes periodically from 0 to 1 and back
again — in other words, they toggle.

Each column changes at half the speed of the column on its
right, so counting is closely related to dividing by 2.

Counting in binary

Building block of a counter

0 0 0

ABC

1

0

1

0

1

0

1

0

1

1

0

0

1

1

0

0

0

1

1

1

1

Look in more detail. When does each column change?

0 0 0

B toggles whenever A goes from 1 to 0

C toggles whenever B goes from 1 to 0

General rule: each bit toggles when the less significant
bit changes from a 1 to a 0.

Each flip-flop is triggered by the less significant one:
B is triggered by A, C is triggered by B, and so on.

Triggering is when the less significant bit goes from 1 to 0:
negative edge triggering.

The toggling action needs a T (toggle) flip-flop with T = 1,
or a JK with J = K = 1.

Action of a clocked JK or toggle flip-flop

clock

1

1

J

K

Q

Q

clock

Q

negative edge triggering

• Flip-flop has J = K = 1 so that it toggles on each clock transition

• Flip-flop triggers on negative edge (clock goes from 1 to 0)

• This halves the frequency as required: fQ = fclock/2

• For more than one bit, use Q output as clock input for next stage

3 bit counter with JK flip-flops

J

K

C

Q

Q

J

K

C

Q

Q

J

K

C

Q

Q

1

1

1

1

1

1

clock in

Each stage divides the frequency by 2

Called a ripple counter because the clock ‘ripples’ from stage to stage

• We shall later look at synchronous counters, where the same clock is
applied directly to all flip-flops

Waveforms sketched on next page

• Propagation delay is not shown but will be important!

Note that flip-flops are lettered A, B, C from left to right

• A is least significant bit (units), B is twos, C is fours

• but numbers are written in the sequence CBA!

A B C

JK
C

QQ

1 1

1 1

1 1

clock

A

B

C

JK
C

QQ

JK
C

QQ

3-stage ripple counter (idealized)

0 1 0 0 0 01 1 1

0 0 0 001 1 1 1

0 0 0 0 1 1 1 1 0

0 1 2 3 4 5 6 7 0counter CBA:

Ripple counters

• This is a basic ripple counter; more complicated systems can be built

• It is important that the flip-flops are negative edge triggered! See the
tutorial sheet

• The circuit is usually drawn with the least significant bit (LSB, flip-flop A)
on the left, but numbers are written in the opposite order (…CBA)

• It rolls over from 7 back to 0 when it exhausts its range of 23 = 8 states

• It is called a ripple counter because the clock ‘ripples’ through the
system, from flip-flop to flip-flop

• The clock gets later by the propagation delay in each flip-flop, so the flip-
flops for more significant bits change later than those for less significant
bits — see next diagram

• The counter contains incorrect values (glitches) while the clock is rippling

- This effect is biggest when the most significant bit (MSB) changes

- Enlarge this part of the timing diagram

JK
C

QQ

1 1

1 1

1 1

A

B

C

JK
C

QQ

JK
C

QQ

3-stage ripple counter with propagation delay

0 1 0 0 0 01 1 1

0 0 0 001 1 1 1

0 0 0 0 1 1 1 1

0 1 2 3 4 5 6 7ideal counter:

0

0

clock

expand

clock

QA

propagation delay

counter: 7 6 4 0

Detail of ripple effect in transition from 7 to 0

7

Because of the
ripple, the counter
briefly holds the
unwanted values 6
and 4.

The correct value is
not reached until
after 3 propagation
delays

QB

QC

QA goes 1 to 0,
counter goes 7 to 6

QB goes 1 to 0,
counter goes 6 to 4

QC goes 1 to 0,
counter goes 4 to 0

Decade counter

How do we make a counter whose range is not a power of 2, such as a
decade counter (10 states, 0–9)?

Solution: Use a binary counter (4 flip-flops, 16 states, 0–15 naturally) but
clear it (reset to 0) as soon as it enters the first forbidden state (10).

Use CLR (clear) control input of flip-flops.

detect first forbidden state

CLR CLR CLR CLR

1

1

clock

Notes:

• CLR must act instantly, not wait for next clock transition — needs
asynchronous/direct/jam clear

• check whether CLR is active low (as above) or high (less common)

J

K

C

Q

Q

J

K

C

Q

Q

J

K

C

Q

Q

J

K

C

Q

Q

Circuit for decade counter

The reset circuit must detect DCBA = decimal 10 = binary 1010. Therefore

clear = D C B A (needs 4-input AND)

In fact this is overkill and clear = D · B is sufficient — why?

The circuit below has NAND rather than AND because the clear input is
active low: It should be kept high during normal counting and low for clear.

CLR CLR CLR CLR

1

1

clock

A B C D

This will now roll over from 9 to 0 as required
• but it must enter the first unwanted state (10) briefly so that the reset

(clear) pulse can be generated
• look at the reset process in more detail

J

K

C

Q

Q

J

K

C

Q

Q

J

K

C

Q

Q

J

K

C

Q

Q

Reset sequence in an asynchronous decade counter

clock

reset

QA

counter: 9 9 8 10 10 0 0

propagation
delay

QB

QC

QD

clock causes QA to go from 1 to 0, counter goes 9 to 8

QA causes QB to go from 0 to 1, counter 8 to 10

counter = 10: reset activated

counter cleared

active low

reset
cleared

Reset sequence in an asynchronous decade counter

clock

reset

QA

counter: 9 9 8 10 10 0 0

propagation
delay

QB

QC

QD

clock causes QA to go from 1 to 0, counter goes 9 to 8

QA causes QB to go from 0 to 1, counter 8 to 10

counter = 10: reset activated

counter cleared

active low

reset
cleared

Unwanted state (10) and reset pulse in asynchronous decade counter

counter enters
state 10

reset signal
emerges from
NAND gate

counter cleared

reset cancelled

output from QB (F2)
(goes from 0 to 1 at 10)

reset pulse
(active low)

counter = 10 during this
interval (about 60 ns)

Example — design a counter to cycle through 1–6

This might be used to build an electronic die — singular of ‘dice’ — for
example. (You will build a die later in the course with a microcontroller, but
this project used flip-flops and gates in the past.)

This can be designed in the same way as the decade counter, but needs to
be reset to 1 rather than 0. This can be done by using both Preset and
Clear inputs.

Down counters can be built in a very similar way to up counters. See
examples on the tutorial sheet.

Review exercises

What is the connection between counting in binary and division by 2?

Why is it important that the flip-flops in a simple, ripple, up counter be
negative edge triggered?

A circuit diagram shows the flip-flops in a simple binary ripple counter. The
values in the flip-flops, read from left to right, are 1010. What is the
numerical value held in the counter as a whole?

An oscilloscope displays the clock and Q outputs from a binary counter.
What feature shows that it is a ripple counter?

Why do ripple counters hold incorrect values for some of the time?

What is the general rule for designing a counter whose range is not a
power of 2, such as a decade counter?
Hint: which state should be detected by the reset circuit?

How (in outline) would you design a counter to cycle around 1–10?

How do you make a binary down counter? — see tutorial sheet.

