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This paper describes a vision-based navigation and guidance design for UAVs for a
combined mission of waypoint tracking and collision avoidance with unforeseen obstacles
using a single 2-D passive vision sensor. An extended Kalman filter (EKF) is applied to
estimate a relative position of obstacles from vision-based measurements. The stochastic
z-test value is used to solve a correspondence problem between the measurements and the
estimates that have been already obtained by then. A collision cone approach is used as a
collision criteria in order to examine if there is any obstacle that is critical to the vehicle. A
guidance strategy for collision avoidance is designed based on a minimum-effort guidance
(MEG) method for multiple target tracking. The vision-based navigation and guidance
designs suggested in this paper are integrated with realtime image processing algorithm
and the entire vision-based control system are evaluated in the closed-loop 6 DoF flight
simulation.

I. Introduction

Autonomous operation of Unmanned Aerial Vehicles (UAVs) has been progressively developed in recent
years. In particular, vision-based navigation, guidance and control has been one of the most focused research
topics for the automation of UAVs. This is because in nature, birds and insects use vision as an exclusive
sensor for object detection and navigation. Furthermore, it is efficient to use a vision sensor since it is
compact, light-weight and low cost. Vision-based autonomous flight of UAVs is expected to be applied
for practical missions in both military and commercial fields. For some missions UAVs have to operate in
congested environments that include both fixed and moving obstacles. For such missions, obstacle avoidance
is an anticipated requirement. Therefore, this paper focuses on vision-based navigation and guidance system
design for UAVs to detect and avoid unforeseen obstacles while executing a waypoint tracking mission.

Kumar and Ghose proposed a navigation and guidance law that achieves both waypoint tracking and
collision avoidance.1 However, this algorithm assumes range information is available from a radar. Further-
more, the flight is restricted in a 2-D plane. A method described in a paper by Kwag and Kang also assumes
a radar sensor system for collision avoidance.2 In this paper a 3-D state of each obstacle is estimated from
2-D vision-based information. We assume that an image processor is available which is capable of detecting
multiple obstacles in each image obtained from a 2-D vision sensor. Specifically in our work, a real-time im-
age processor based on active contours developed by Ha et al. is used.3 Since the vision-based measurement
is a nonlinear function of the relative state, an Extended Kalman Filter (EKF) is applied to the navigation
filter design. There is the possibility of more than one obstacle being detected in the image frame. In such
a case, every obstacle in the measurement set is matched with estimated obstacle data before applying the
EKF procedure. The statistical z-test value4,5 is introduced to perform this correspondence.

Once estimated obstacle states are obtained, a collision criterion is applied to each obstacle in order to
examine if the obstacle is critical to the vehicle or not. A collision cone approach is suggested by Chakravarthy
and Ghose.6 A collision cone is defined for each obstacle by a set of tangential lines to the obstacle’s collision-
safety boundary. An obstacle is considered to be critical if the relative velocity vector lies within its collision
cone. Their algorithm is limited to a case in which a vehicle and obstacles stay in a 2-D plane. In this paper,
the collision cone approach is extended so that it can be applied to a 3-D collision avoidance problem by
considering only a 2-D plane including the relative position and velocity vectors of an obstacle with respect
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to the vehicle. If there is more than one critical obstacle, the closest is chosen as the most critical and an
collision avoidance maneuver is executed with respect to only the critical obstacle.

After the most critical obstacle is identified, an aiming point is given at the intersection of the collision
cone and the collision-safety boundary. In order to avoid the obstacle, the vehicle is guided towards the aiming
point. Hence, the collision avoidance and waypoint tracking problem is reduced to a two-waypoints tracking
problem. As a guidance strategy for collision avoidance, proportional navigation (PN)-based guidance have
been suggested by Han and Bang and the present authors.7,8 Then, the authors developed a Minimum-
Effort Guidance (MEG) design9 based on Asher’s work which was originally developed for multiple target
tracking.10,11 MEG-based guidance minimizes the control effort required for the vehicle to reach the waypoint
via the aiming point, while the PN-based approach minimizes the effort required to reach the aiming point
then to reach the waypoint in a sequential manner. Consequently MEG-based guidance can achieve the
mission with less control effort compared to PN-based guidance. This is important when maneuvering in
congested environments with limited maneuver capability.

The entire vision-based navigation and guidance system for obstacle avoidance has been integrated with
a real-time image processor and implemented in a 6 DoF UAV flight simulation. The vehicle modeled is the
YAMAHA RMax helicopter. The own-ship navigation system and a neural-network based adaptive flight
controller have been previously implemented.12,13 It is assumed that the vehicle has a camera and its images
are also simulated. The synthetic images are processed by the image processor. The algorithms are evaluated
in simulations of air-to-air collision avoidance with multiple stationary obstacles.

This paper is organized as follows. SectionII formulates the vehicle motion dynamics and its guidance
mission. SectionIII presents a vision-based relative navigation filter design using the z-test to address the
correspondence problem. SectionIV discusses collision criteria and SectionV derives a guidance law for
obstacle avoidance. The simulation results are presented in SectionVI. SectionVII includes concluding
remarks.

II. Problem Formulation

Figure 1 summarizes the problem geometry. Let FL be a local fixed frame. Let Xv, V v be a vehicle’s
position and velocity vector expressed in FL. Let a be the vehicle’s acceleration input vector in FL. Then
the vehicle motion dynamics is modeled by

Ẋv =




Ẋv

Ẏv

Żv


 =




Uv

Vv

Wv


 = V v (1)

V̇ v =




U̇v

V̇v

Ẇv


 =




ax

ay

az


 = a (2)

In this problem, ax = 0 is always applied so that the vehicle maintains a constant speed in the X-direction
in FL. The vehicle is controlled by commanding a lateral acceleration ay and a vertical acceleration az only.
The vehicle’s state is assumed to be available through the own-ship navigation filter. A camera is mounted
on the vehicle and its attitude is assumed to be known in the form of a rotation matrix from the local frame
FL to the camera frame FC , which is denoted by LCL.

Let Xwp = [ Xwp Ywp Zwp ]T be a given waypoint location in FL. Then the waypoint tracking problem
is achieved if

Yv(tf ) = Ywp, Zv(tf ) = Zwp (3)

where tf is a time at which Xv(tf ) = Xwp is satisfied. Let Xobs be obstacle’s position in FL and assume
Ẋobs = 0, i.e., stationary obstacles. Then the obstacle’s relative motion dynamics with respect to the vehicle
is written by

Ẋ = Ẋobs − Ẋv = −V v (4)

where X = Xobs − Xv = [ X Y Z ]T is a relative position vector in FL. For collision avoidance, the
vehicle is required to keep a minimum distance d from every obstacle. That is, a collision-safety boundary
becomes a spherical surface with a radius d and a center at Xobs. Therefore, a mission given to the vehicle
is to satisfy (3) while always maintaining ‖X‖ ≥ d for all obstacles. However, the obstacle’s location Xobs
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Figure 1. Problem Geometry Figure 2. Pin-Hole Camera Model

is unknown to the vehicle, and so the relative position X is also unknown. Hence, for obstacle avoidance,
the guidance system can only use its estimate which is updated by using 2-D vision-based information from
the camera.

III. Vision-Based Relative Navigation Design

A. Measurement Model

The camera frame FC is taken so that the Xc-axis aligns with the camera’s optical axis. Let Xc = LCLX =
[ Xc Yc Zc ]T be the relative position vector expressed in FC . Assuming the pin-hole camera model shown
in Figure 2, the 2-D measurement of the obstacle position in an image plane at a k-th time step is given by

zk =
f

Xck

[
Yck

Zck

]
+ νk = h(Xck

) + νk (5)

where f is a focal length of the camera and νk is a zero mean Gaussian discrete white noise process with
covariance matrix Rk = σ2I.

B. Extended Kalman Filter

Since the measurement model (5) is nonlinear with respect to the relative state, an Extended Kalman Filter
(EKF) is applied to estimate the relative position vector X of each obstacle. The EKF for the process model
(2,4) and the measurement model (5) is formulated as follows.14,15

1. Update

The EKF update procedure is performed by using the residual between the actual measurement and the
predicted measurement.

X̂k = X̂
−
k + Kk(zk − ẑ−k ) (6)

Pk = P−k −KkHkP−k (7)
Kk = P−k Hk(HkP−k HT

k + Rk)−1 (8)

where X̂k is an updated estimate of X at a k-th time step and Pk is its error covariance matrix. Kk

is a Kalman gain. X̂
−
k and P−k are a predicted estimate and its error covariance matrix. A predicted
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measurement is obtained by ẑ−k = h(LCLk
X̂
−
k ) where LCLk

is a camera attitude at the k-th time step. and
a measurement matrix Hk is calculated by

Hk =
∂h(LCLk

X)
∂X

∣∣∣
X=

ˆX
−
k

=
1

X̂−
ck



− Ŷ −ck

X̂−
ck

1 0

− Ẑ−ck

X̂−
ck

0 1


 LCLk

=
1

X̂−
ck

[
−h(X̂

−
ck

) I
]
LCLk

(9)

2. Prediction

The EKF prediction procedure propagates the updated estimate obtained at a current time step k to the
next time step k + 1 through the process model (2,4).

X̂
−
k+1 = X̂k − V vk

∆tk − 1
2
ak∆t2k (10)

P−k+1 = ΦkPkΦT
k + Qk (11)

where ∆tk = tk+1 − tk is a sampling time. Φk is a state transition matrix and which can be approximated
by

Φk ' I

for stationary obstacles when ∆tk is sufficiently small. Qk is a covariance matrix of the process noise. The
form Qk = σ2

XI ·∆tk is used in the filter design.

C. Correspondence Problem

Since there can be multiple obstacles in the vehicle’s surroundings, the image processor may detect more
than one obstacle in the same image frame. Suppose that n different obstacles (denoted by zk1 ,zk2 , · · · ,zkn)
are detected on an image given at the k-th time step. Also suppose that the predicted estimate of the relative
position of m obstacles (denoted by X̂

−
k1

, X̂
−
k2

, · · · , X̂−
km

) have been obtained by that time and stored in the
database. In order to update each estimate correctly, it is very important to create a right correspondence
between the measurements and the estimates before applying the EKF procedure. The statistical z-test4,5

is used for this purpose. In this problem, the z-test value of the correspondence between i-th measurement
and j-th estimate is calculated for the residual

rij = zki − ẑ−kj
= zki − h(LCLk

X̂
−
kj

) (12)

Then the z-test value is defined by

ztestij = rT
ijE

−1
[
rijr

T
ij

]
rij = rT

ij

(
Hkj P

−
kj

HT
kj

+ Rk

)−1

rij (13)

where Hkj and Pkj are the measurement matrix and the predicted error covariance matrix associated with
the j-th predicted estimate. The z-test value given in (13) is inversely related to the likelihood of an
event that the i-th measurement comes from the same obstacle as the j-th predicted estimate is estimating.
Therefore, a small z-test value indicates a high correspondence between a chosen pair (zki , X̂

−
kj

). For each
measurement, the z-test value is calculated for every predicted estimate. Then the estimate which attains
the least z-test value is chosen to be updated by using that measurement. In other words, zki updates the
predicted estimate X̂

−
kj

if
ztestij = min{ztesti1, ztesti2, · · · , ztestim} (14)

is satisfied. However, when the minimum z-test value is still larger than a certain threshold value, the
estimate is considered to come from a newly detected obstacle and the new estimated obstacle position
X̂km+1 is added to the existing estimate set. After all the correspondences are made, there may remain
a predicted estimate which has not yet been updated. This happens when the corresponding obstacle lies
outside of the camera’s field of view or when the image processor fails to detect it. For such an estimate,
only the EKF prediction procedures (10,11) are executed. The absence of a measurement corresponds to
having a measurement having an infinitely large noise. When Rk = ∞ in (8), the Kalman gain becomes zero
and no change is made in the EKF update procedure (6,7).
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IV. Collision Criteria

For purposes of obstacle avoidance, each obstacle in the estimate set is examined to determine if it is
critical to the vehicle using the latest updated estimate of the obstacle positions. Chakravarthy and Ghose
suggested a 2-D collision cone approach to establish a collision criteria.6 In the collision cone approach, a
collision cone is defined for each obstacle and an obstacle is considered to be critical if the relative velocity
vector lies within its collision cone. This approach has been extended to 3-D in Ref.9 In this problem, the
vehicle is required to maintain a minimum separation distance d from every obstacle. Therefore, for each
obstacle, a collision-safety boundary is taken as a spherical surface with radius d and center at the obstacle
position. Then a collision cone is defined by a set of tangential lines from the vehicle to the obstacle’s
collision safety boundary. Consider the vehicle at Xvk

with its velocity V vk
at a time step k. For an

obstacle located at Xobs, let Xk = Xobs −Xvk
be the relative position of the obstacle with respect to the

vehicle. Consider a 2-D plane including the relative position vector Xk and the vehicle velocity vector V vk
.

Then the collision-safety boundary appears as a circle and the collision cone is specified by two vectors (p1,
p2) wihch are from the vehicle position and are tangential to the boundary circle, as shown in Figure 3. p1

and p2 can be expressed as follows.
pi = Xk + dui, i = 1, 2 (15)

where u1 and u2 be a unit vector from the obstacle position to each of the two different points.




u1 = − 1

‖Xk‖2
(c(Xk · V vk

) + d)Xk + cV vk

u2 = 1

‖Xk‖2
(c(Xk · V vk

)− d)Xk − cV vk
, c =

√
‖Xk‖2−d2

‖Xk‖2‖V vk
‖2−(Xk·V vk

)2

(16)

The vehicle velocity vector can be written in terms of p1 and p2.

V vk
= ap1 + bp2 (17)

where the coefficients a and b are calculated as follows.

a =
1
2

(
Xk · V vk

‖Xk‖2 − d2
+

1
cd

)
, b =

1
2

(
Xk · V vk

‖Xk‖2 − d2
− 1

cd

)
(18)

Then, the collision cone criterion is given by

a > 0 AND b > 0 (19)

When (19) is satisfied, the vehicle is considered to be in danger of collision with the obstacle and it should
take some avoiding maneuver. The aiming point Xap is specified to be used for collision avoidance, as shown
in Figure 3.

Xap =




Xap

Yap

Zap


 =

{
p1, 0 < b ≤ a
p2, 0 < a < b

(20)

Figure 3. Collision Cone and Aiming Point
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Since the vehicle has a constant speed in the X-direction, a time-to-go to the aiming point is derived as
follows.

tgo = tk +
Xap −Xvk

Uvk

(21)

When (tgo − tk) is larger than a given threshold T , there is no urgency for the vehicle to take an avoiding
maneuver. Also, if it is negative or tgo is larger than the terminal time tf , there is no chance of collision.
Therefore, in addition to the collision cone criterion, we impose the following time-to-go criteria.

tgo − tk < T AND 0 < tgo < tf (22)

An obstacle is considered to be critical only if both (19) and (22) are satisfied. If there is more than one
critical obstacles, the one having the smallest time-to-go is chosen as the most critical obstacle.

V. Minimum-Effort Guidance

In this section, a guidance law is design to achieve waypoint tracking with obstacle avoidance. When
there is no critical obstacle, the guidance input can be derived by solving the following minimization problem.

min
a

J =
1
2

∫ tf

tk

aT (t)a(t)dt =
1
2

∫ tf

tk

(
a2

y(t) + a2
z(t)

)
dt (23)

subject to the vehicle dynamics (1,2), with a terminal constraint (3). The terminal time tf is given by

tf = tk +
Xwp −Xvk

Uvk

(24)

Since the waypoint location and the vehicle’s own-ship states are known, the optimal guidance can be realized
as

a∗k = 3


 1

(tf − tk)2




0
Ywp − Yvk

Zwp − Zvk


− 1

(tf − tk)




0
Vvk

Wvk





 (25)

This solution is well known as PN guidance, which is considered a simple and very effective strategy in
target interception.16 When there is a critical obstacle, a corresponding aiming point Xap and time-to-go
tgo are given from the collision criteria. However, since the obstacles’ true positions are unknown, we can
only obtain their estimated values X̂ap and t̂go. In order to avoid a collision with the most critical obstacle,
the vehicle should fly towards the aiming point. The MEG-based guidance law10,11 is derived by solving the
same minimization problem given in (23) with an additional interior point constraint.

Yv(t̂go) = Ŷap, Zv(t̂go) = Ẑap (26)

From Euler-Lagrange equations,17 this problem can be solved analytically as follows.

ak = a∗k +
3

3(t̂go − tk) + 4(tf − t̂go)


 3

t̂go − tk




0
Ŷap − Yvk

Ẑap − Zvk


− 2

tf − t̂go




0
Ywp − Ŷap

Zwp − Ẑap


−




0
Vvk

Wvk





 (27)

where a∗k is the PN guidance input given in (25).9
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VI. 6 DoF Image-in-the-Loop Simulation

A. UAV Flight Simulation

The vision-based relative navigation filter designed in Section III, the collision criteria defined in Section IV
and the minimum-effort guidance law derived in Section V have been implemented in a 6 DoF UAV flight
simulation. A vehicle modeled in the simulation is the unmanned helicopter GTMax (Figure 4), which is
based on the YAMAHA RMax industrial helicopter. The GTMax has a rotor diameter of 10.2 (ft) and a
weight of approximately 157 (lbs). The basic flight controller, own-ship navigation and guidance system of
the vehicle have already been implemented.12 The controller is an adaptive neural network flight controller
and it determines actuator inputs based on the navigation system output and position/velocity/acceleration
commands.13 In addition, the vehicle has a camera and its image is also simulated. The synthetic images
are processed and result in a detected obstacle’s image coordinate in pixels. The image processor has been
developed for real-time target tracking by using an active contour method.3,18 Figure 5 is a display of the
flight simulation in an obstacle avoidance configuration. Red spheres are obstacles which the vehicle needs
to avoid. The window on the left is a map view from the top and the yellow line is the vehicle trajectory.
The window at the top right shows a synthetic camera image in the simulation. The image processor outputs
are represented by small green crosses in this window. The image processor is detecting the center positions
of two obstacles in this picture. The right bottom window displays a chase view from behind of the vehicle.
The estimated obstacle positions are indicated in the map view and the chase view windows.

B. Simulation Settings

Before starting a mission, the vehicle is commanded to fly upward 400 (ft) and then forward 200 (ft) to reach
a starting point X0 = [ 200 0 −400 ]T (ft) by using the basic guidance system. At the same time, the
vehicle is commanded to pass through the point X0 with its velocity V 0 = [ 50 0 0 ]T (ft/sec). As soon as
the vehicle passes the starting point, the entire system for the vision-based obstacle avoidance is turned on
and the guidance system is switched to the one described in SectionV. The vehicle is required to fly 1600 (ft)
forward from the starting point, which means that a waypoint is given at Xwp = [ 1800 0 −400 ]T (ft).
On the way to the waypoint, there exist two unforseen stationary obstacles at Xobs1 = [ 600 50 −420 ]T

(ft) and Xobs2 = [ 1200 0 −400 ]T (ft). Both obstacles are given as a sphere with radius 20 (ft). To avoid
a collision, the vehicle needs to maintain at least a minimum separation distance d = 100 (ft) from both of
the obstacles for entire flight path. After reaching the waypoint, the guidance system is switched back to the
basic one and it guides the vehicle to reach and stop at the terminal point Xf = [ 2000 0 −400 ]T (ft).

For the navigation filter design, σ = 0.1 and σX = 0.1 were used for the measurement noise covariance
matrix Rk and for the process noise covariance matrix Qk, respectively. The EKF is initialized by using the
first measurement z0 obtained for each obstacle. It is assumed that we have some knowledge about range r0

(only for the initialization). Then the initial estimate of a relative position and its error covariance matrix

Figure 4. GTMax

Figure 5. Simulation Interface
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are set as

X̂0 = r0

[
1
z0

]
, P0 = LLC0

[
σ2

r 0
0 r0Rk

]
LT

LC0
(28)

In the simulation, r0 = 300 (ft) was used for the first obstacle and r0 = 800 (ft) was used for the second
one, and σr = 50 (ft) was used for the both. If the image processor detects both obstacles immediately after
starting the mission, the first and second obstacles are 400 (ft) and 1000 (ft) ahead of the vehicle at that
time. Therefore, initially, a range to the first obstacle is underestimated by 100 (ft) and that to the second
one is underestimated by 200 (ft). For the correspondence problem, ztestmax = 3 was set as a threshold
value. By looking at the z-table,5 this threshold value implies that a hypothesis of the correspondence is
rejected when its likelihood is less than 9.364 %. In the collision criteria, a threshold value for the time-to-go
used in the simulation was T = 4 (sec). Since the vehicle maintains approximately 50 (ft/sec) speed in the
X-direction, T = 4 (sec) means that an obstacle is not considered to be critical if it has a range more than
double of the minimum separation d from the vehicle.

C. Results

1. Image Processing

Figure 6 includes plots of a number of obstacles which are detected by the image processor, and their image
coordinates z. In this simulation, the vehicle reached at the starting point X0 at t0 = 69.9 (sec), passed
by the first obstacle Xobs1 (Obstacle1) at t1 = 78.1 (sec) and the second obstacle Xobs2 (Obstacle1) at
t2 = 91.5 (sec), and finally reached the waypoint Xwp at tf = 106.1 (sec). From Figure 6, until t = 74.5
(sec), the image processor detected only Obstacle1. After that, Obstacle1 went out of the camera’s field of
view, and the image processor started to detect Obstacle2 until 87.5 (sec). So the image processor did not
capture both two obstacles in the same image frame in this example. In Figure 6, the image coordinates of
each obstacle’s position detected by the image processor are compared with those calculated by using true
states of the vehicle and the obstacles. They are perfectly matched at the beginning, but the measurement
error becomes larger as the vehicle (or camera) comes closer to the obstacle. An average processing time
was ∆t = 0.1213 (sec).

2. Estimation

Figure 7 shows z-test results for a correspondence between measurements and estimates. At initial time t0,
an estimated obstacle data X̂1 which corresponds to Obstacle1 was created based on the first measurement
z0. After that, the z-test value is calculated to check a correspondence between the measurement z and the
updated estimate X̂1 at each time step. At t = 74.5 (sec), the z-test value became larger than its threshold
ztestmax = 3 and a new estimated obstacle data X̂2 which corresponds to Obstacle2 was created. From
that point, the z-test values are calculated to check a correspondence between the measurement z and two
estimates X̂1 and X̂2. From Figure 7, it can be seen that the z-test value for X̂1 is much larger than that
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for X̂2 after t = 74.5 (sec) and the measurement was correctly assigned to the estimated obstacle data of
Obstacle2. The z-test algorithm worked well for the correspondence problem.

Figures 8 and 9 present the position estimation error and its standard deviation for each obstacle. When
the estimate is initialized for each obstacle, there is a very large range estimation error eX (ft). 100 (ft)
underestimated for Obstacle1 and 50 (ft) overestimated for Obstacle2. Those estimation errors are reduced
to less than 10 (ft) through the EKF updates by using the vision-based information. Even though there
remains a small bias in the lateral position estimates (which is due to a bias in the measurement error),
vision-based estimation performance is sufficiently accurate to be used in the collision criteria.

3. Guidance

Figure 10 shows the vehicle trajectory with positions of the starting point, the waypoint and the two obstacles.
Figure 11 plots a distance from each obstacle. From those results, we can see that the suggested guidance law
successfully made the vehicle reach a given waypoint while not violating the minimum separation distance
d = 100 (ft) from the two obstacles. Figure 12, 13 and 14 are time profiles of the vehicle’s position, velocity
and acceleration. Figure 12 shows that the vehicle’s avoiding maneuver is three dimensional. In Figure 14,
the actual vehicle acceleration is compared with the commanded acceleration which is determined by the
minimum-effort guidance (27). The lateral acceleration command was very large around t = 78 (sec). This
is because the denominator (t̂go − tk) in (27) went close to zero. Figure 15 shows a critical obstacle flag,
which is 1 when an obstacle is critical and 0 when it is not, for each obstacle. This result verified that the
collision criteria established in SectionIV worked appropriately.

VII. Conclusion

This paper summarizes the design of a vision-based relative navigation and guidance system for a UAV
to achieve 3-D waypoint tracking with vision-based obstacle avoidance. All the algorithms developed in
this paper have been integrated with the real-time image processor and evaluated in a 6 DoF UAV flight
simulation. A good performance of the entire system, which includes the image processor, the EKF-based
navigation filter using the z-test to solve the correspondence problem, the collision criteria and the MEG-
based guidance law, has been verified in a very realistic simulation with exactly the same configuration as an
actual autonomous flight system. The next step of this work is to test the algorithms in an actual flight. Also
as future work, we would like to extend the algorithm so that it can be applied to maneuvering obstacles.
An adaptive estimator can be applied to estimate a relative state of moving obstacles.19
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