
Inline Assembly: A Fast Quadrature Decoder�
Posted on December 21, 2011 by krazatchu

Inline assembly is a great tool to have in your programming arsenal. It gets things done as fast as a kitten chasing

a hummingbird, yet retains the usability and portability of C code.

This bit will decode a quadrature input from a rotary incremental or linear

position sensor, it polls two inputs (PIND4 & PIND5) to convert the

incoming grey code into respective direction and count, tallying the position

in a signed 16bit variable. It can be run on pinchange interrupt, timer

interrupt, or called as a function. It also contains a provision for missed

transitions.

Globally we have three declared variables, the current position and a couple

of previous variables. As they will be modified inside the inline statement, we have declared them as volatile:

We also have a locally declared 16 bit variable, used for temporary storage during calculations. In assembly this

would normally be handled by a pair of the x, y, z doubles:

In standard inline form, the inputs and outputs are listed as the last bit, separated by colons. As zbuffer is a

temporary variable it’s only declared in the output, but must be constrained to upper registers (r16 to r31) as it will

be used with immediates. The input uses the integer constraint while everything else is relegated to any available

register. This allows for the compiler to have the most flexibility in assigning resources:

The original assembly was written by Chan of ElmChan, it was converted to inline and republished with

permission under GPL. This code has been tested on a DC Servo sporting a Mega8 @ 16Mhz, running inside a

timer interrupt at 100 kHz. No registers were harmed in the making of this code. Finally without further NOPs,

here is the complete code:

NoMi DESIGN
Making good things happen…

volatile int CurrentPosition;
volatile unsigned char PreviousEncoder;
volatile unsigned char PreviousDirection;

unsigned int Zbuffer = 0; // setup a 16bit temporary local buffer

50
51
52
53
54
55
56
57
58
59
60

// Output
: "=r" (CurrentPosition),
 "=d" (Zbuffer),
 "=r" (PreviousEncoder),
 "=r" (PreviousDirection)

// Input
: "I" (_SFR_IO_ADDR(PIND)),
 "0" (CurrentPosition),
 "2" (PreviousEncoder),
 "3" (PreviousDirection)

1
2
3
4
5
6
7
8
9

unsigned int Zbuffer = 0; // setup a 16 bit temporary local buffer

asm volatile(
// incoming stack maintance is handled by compiler

"mov %A1, %2 \n\t" // Store previous encoder in low buffer
"in %2, %4 \n\t" // Input encoder state PORTD 0b00xx0000
"swap %2 \n\t" // Swap nibbles 0b76xx3210 -> 0b321076xx

Inline Assembly: A Fast Quadrature Decoder… | NoMi DESIGN http://n0m1.com/2011/12/21/inline-assembly-a-fast-quadrature-decoder/

1 of 2 02/01/2012 16:57

An example application and the current test platform is the DC Servo kit…

Like Tweet 0 Share

This entry was posted in ASM, AVR, Embedded, Encoder, Motion Control, Sensors. Bookmark the permalink.

NoMi DESIGN

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

"ldi %B1, 1 \n\t" // Load 1 into high buffer
"sbrc %2, 1 \n\t" // Skip next instruction if bit 1 is clear
"eor %2, %B1 \n\t" // Exclusive OR, ENC = 1x, if 10 -> 11, if 11 -> 10

"sub %A1, %2 \n\t" // Subract previous from 11 or 10, store in low
"andi %A1, 3 \n\t" // AND with 11 - check if bits have changed
"breq exitpoint \n\t" // If equal, no change, jump to exit

"cpi %A1, 3 \n\t" // Compare low buffer to 0b00000011
"breq decrement \n\t" // If equal jump to decrement

"cpi %A1, 1 \n\t" // Compare low buffer to 0b00000001
"breq increment \n\t" // If equal jump to increment

"mov %A1, %3 \n\t" // No branch = lost in transistion
"mov %B1, %3 \n\t" // Use previous direction to make up lost bit
"lsl %A1 \n\t" // Logical left shift = x2 - double up for lost bits
"asr %B1 \n\t" // Clear and save signed flag
"rjmp summation \n\t" // Jump to total

"decrement: \n\t"
"ldi %A1, -1 \n\t" // Load low buffer with -1
"ser %B1 \n\t" // Set high buffer for negative number = 0xFF
"rjmp storeprevious \n\t" // Jump over/skip increment

"increment: \n\t"
"ldi %A1, 1 \n\t" // Load low buffer with 1
"clr %B1 \n\t" // Clear high buffer

"storeprevious: \n\t"
"mov %3, %A1 \n\t" // Store the previous direction in low buffer

"summation: \n\t"
"add %A0, %A1 \n\t" // Add low byte and carry to high
"adc %B0, %B1 \n\t" // This becomes the 16bit variable CurrentPosition

"exitpoint: \n\t" // final destination

// outoging stack maintance is handled by compiler....

// Output
: "=r" (CurrentPosition),
 "=d" (Zbuffer),
 "=r" (PreviousEncoder),
 "=r" (PreviousDirection)

// Input
: "I" (_SFR_IO_ADDR(PIND)),
 "0" (CurrentPosition),
 "2" (PreviousEncoder),
 "3" (PreviousDirection)

// Clobber
: // nothing to clobber

);

Proudly powered by WordPress.

Inline Assembly: A Fast Quadrature Decoder… | NoMi DESIGN http://n0m1.com/2011/12/21/inline-assembly-a-fast-quadrature-decoder/

2 of 2 02/01/2012 16:57

