Interrupt based UART library module
(for C language)

T8 goTo HU T o3 1T o] o PP PP PPT 2
FRATUIES ...t e 2
LiSt Of COUE MOUUIESeeeeiiiiciieeee e 3
Using the Library Module in @ Project ... e e e e e e e ee e e 3
SNared ParameterSoooi i 4
Sared DAta BYLIESuueuieiiiiiiis e e s s ettt et e ettt e s e e e s e e e e e e e e ee e e e e e e e e e e rnae e 4
SNArEd FUNCHIONS ..o e 5
SNATEA MECTOSeeeiiiiieie ettt e e e e e 6
FUNCHIONS DETAIIS.....eeiiiiiiieie et 7
MACTOS DELAIS ..eeeeiiiiiiie e 10
Y Ao T = Lo IS] = LU L= = o 14

Interrupt based UART library module (‘C’) Page 1

1. Introduction

The UART general purpose library module provides ‘C’ functions, which helps the user to transmit
and receive character data through the predifined FIFO (First-in-First-out) buffer . This module
uses the interrupt based transmission and reception of the data. By using these functions user can
concentrate on high-level application development rather than worrying about setting and clearing
the bits of registers . It allows user to do other processing , rather than waiting a lot of time for the
chunk of data to be transmitted or received.

2. Module Features

e Supports user-defined First-in, First-out (FIFO) buffers for both transmission and reception.

* Incorporates interrupt-driven transmission and reception, allowing user other tasks to execute
in the foreground.

» Provides simple functions to read from and write to the buffers.

e It supports PIC18 family devices.

Interrupt based UART library module (‘C’) Page 2

3. List of Component Modules

UARTI nt C. Pl C18. ex. t xt This is main test file developed to demonstrate use of the library
functions.

UARTInt C. ¢ This is USART code implementation file. One needs to include this
file in their project.

UARTI Nt C. h This fine contains definition of shared parameters for user. One
needs to include this file in their project.

4. Using the Library Module in a Project

Please follow below steps to use this library module in your project.

PonNpE

@

Use the Application Maestro to configure your code as required.

At the Generate Files step, save the output to the directory where your code project resides.
Launch MPLAB, and open the project’s workspace.

Verify that the Microchip language tool suite is selected (Project>Select Language Tool-suite>
Microchip C18Toolsuite).

In the Workspace view, right-click on the “Source Files” node. Select the “Add Files” option.
Select UARTIntC.C and click OK.

Right-click on the “Header Files” node and select “Add Files”. Select UARTIntC.h and click
OK.

Now right-click on the “Linker Scripts” node and select “Add Files”. Add the appropriate linker
file (. I kr) for the project’s target microcontroller.

Add any other files that the project may require. Save and close the project.

To use the module in your application, invoke the functions as needed.

Interrupt based UART library module (‘C’) Page 3

5. List of Shared Parameters

Shared Data Bytes

unsi gned char
VUARTI nt TxBuf f er [TX_BUFFER_SI ZE]

unsi gned char
VUARTI nt TxBuf Dat aCnt

unsi gned char VUARTI nt TxBuf W Pt r

unsi gned char VvUARTI nt TxBuf RdPt r

unsi gned char
VUARTI nt RxBuf f er [RX_BUFFER_SI ZE]

unsi gned char
VUARTI nt RxBuf Dat aCnt

unsi gned char VUARTI nt RxBuf W Pt r

unsi gned char VUARTI nt RxBuf RdPt r

struct status VUARTI nt St at us

Interrupt based UART library module (‘C’)

It represents user-defined transmit buffer. Data to
be transmitted is stored here. User defines buffer
length in MPAM opt i ons.

It indicates the number of bytes transmit buffer
containing.

It indicates the writing position in to the transmit
buffer.

It indicates reading position pointer, which is used
for actually placing data from buffer in to TXREG
(USART peripheral)

It represents user-defined receive buffer. Data
received is stored here.

It indicates the number of bytes receive buffer
containing.

It indicates the writing position in to the receive
buffer.

It is reading pointer in receive buffer.It keeps track
of data which is being read from receive buffer in to
user application.

This structure contains error and status flags.

Page 4

Shared Functions

voi d UARTInt 1 nit(void)

voi d UARTI nt | SR(voi d)

unsi gned char
UARTI nt Put Char (unsi gned char)

unsi gned char
UARTI nt Get Char (unsi gned char*)

unsi gned char
UARTI nt Get TxBuf f er Enpt ySpace(voi d)

unsi gned char
UARTI nt Get RxBuf f er Dat aSi ze(voi d)

Interrupt based UART library module (‘C’)

Itis used to initialise the serial port according to
Application Maestro selection. It flushes the user
defined FIFO buffers. It initialises error and status flags
of VUARTI nt St at us structure variable in to
appropriate values.

This is Interrupt Service Routine function for
serial(transmit & receive) interrupt. This need to be
called from interrupt servie routine in user’s main
application at proper interrupt vector(low or high
priority vector).

This function places the data to be transmitted in to
user defined buffer. If the transmit buffer is full it returns
with out doing any thing. Otherwise it places argument
data in transmit buffer and and updates

vUARTI nt RxBuf Dat aCnt and

VUARTI nt TxBuf WPtr variables. |If buffer
becomes full it sets UARTI nt TxBufferFul l
bit in VUARTI nt Status structure.

This function places received data from USART in to
the user defined receive buffer and updates

vUARTI nt RxBuf W Pt r.If the receive buffer is empty it
sets UARTI nt bRxBuf ferFul I bit in

VUARTInt Status. Other wise it returns the
data in argunment and updates

VUARTI nt RxBuf Dat aCnt and

VUARTI nt RxBuf RdPt r accordi ngly.

This function returns the number of bytes of free space
left out in transmit buffer at the calling time of this func-
tion. It helps

the user to further write data in to transmit buffer at
once, rather than checking transmit buffer is full or not
with every addition of data in to the transmit buffer.

This function returns the number of bytes of data
available in receive buffer at the calling time of this
function. It helps the user to read data from receive
buffer at once, rather than checking receive buffer is
empty or not with every read of data from receive
buffer.

Page 5

Shared Macros

nDi sabl eUARTTXI nt ()
nEnabl eUARTTXI nt ()

nDi sabl eUARTRXI nt ()
nEnabl eUARTRxI nt ()

nSet UARTRxI nt Hi ghPri or ()
nSet UARTRxI nt LowPr i or ()
nSet UARTTxI nt Hi ghPri or ()
nSet UARTTxI nt LowPri or ()
nBet UART_BRGHHI gh()

nBet UART_BRGHLow()

nBet UART_SPBRG(i BRGVal ue)

nSet UARTBaud(i BaudRat e)

Disables transmit interrupt.

Enables transmit interrupt.

Disables receive interrupt.

Enables receive interrupt.

Sets receive interrupt priority to high.
Sets receive interrupt priority to low.
Sets transmit interrupt priority to high.
Sets transmit interrupt priority to low.
Sets BRGH bit.

Resets BRGH bit.

Sets SPBRG register value as the argument passed.

Sets the baudrate of USART to the argument passed.

Interrupt based UART library module (‘C’)

Page 6

6. Functions

Function
Preconditions

Overview

Input
Output
Side Effects

Stack Requirement

Function
Preconditions

Overview

Input
Output
Side Effects

Stack Requirement

Interrupt based UART library module (‘C’)

voi d UARTInt I nit(void)
None

This function initialises USART peripheral. This function need to be called
before using UARTIntPutChar and UARTIntGetChar functions to
send and receive the characters. This function clears the user defined
buffers and initialises error and status flags to appropriate values.

None
None
None

1 level deep

voi d UARTI nt | SR(voi d)
UARTIntlInit() function should have been called.

This is the Interrupt service routine which is called in the user application's
ISR portion.This function actually sends the data from

transmit buffer to USART and updates the data count and read pointer
variables of transmit buffer. For the receive portion, it reads the data from

USART and places the data in to receive buffer (if no errors occured) and

updates data count and write pointer variables of receive buffer.

None
None
None

2 level deep

Page 7

Function
Preconditions

Overview

Input

Output

Side Effects

Stack Requirement

Function
Preconditions

Overview

Input

Output

Side Effects

Stack Requirement

unsi gned char UARTI nt Get Char (unsi gned char*)
UARTIntlInit() function should have been called.

This function reads the data from the receive buffer. It places the data in to
argument and updates the data count and read pointer variables of
receive buffer.

unsigned char*

unsi gned char
0 - receive buffer is empty and the character could not be read from
the receive buffer.
1 - single character is successfully read from receive buffer.

None

1 level deep

unsi gned char UARTI nt Put Char (unsi gned char)

UARTIntlInit() function should have been called.

This function puts the data in to transmit buffer. Internal implementation
wise , it places the argument data in transmit buffer and updates the data
count and write pointer variables.

unsigned char

unsi gned char
0 - single character is successfully added to transmit buffer
1 - transmit buffer is full and the character could not be added to
transmit buffer.

None

1 level deep

Interrupt based UART library module (‘C’) Page 8

Function
Preconditions

Overview

Input

Output

Side Effects

Stack Requirement

Function
Preconditions

Overview

Input

Output

Side Effects

Stack Requirement

unsi gned char UARTI nt Get TxBuf f er Enpt ySpace(voi d)
UARTIntlInit() function should have been called.

This function returns the number of bytes of free space left out in transmit
buffer at the calling time of this function. It helps the user to further write
data in to transmit buffer at once, rather than checking transmit buffer is
full or not with every addition of data in to the transmit buffer.

None

unsi gned char
0 - There is no empty space in transmit buffer.
number - the number of bytes of empty space in transmit buffer.

None

1 level deep

unsi gned char UARTI nt Get RxBuf f er Dat aSi ze(voi d)
UARTIntlInit() function should have been called.

This function returns the number of bytes of data available in receive
buffer at the calling time of this function. It helps the user to read data
from receive buffer at once, rather than checking receive buffer is empty or
not with every read of data from receive buffer.

None

unsi gned char
number - the number of bytes of data in receive buffer.

None

1 level deep

Interrupt based UART library module (‘C’) Page 9

7. Macros

Macro
Overview
Input
Output
Side Effects

Stack Requirement

Macro
Overview
Input
Output
Side Effects

Stack Requirement

Macro
Overview
Input
Output
Side Effects

Stack Requirement

nDi sabl eUARTTXI nt ()
Disables transmit interrupt
None
None
None

None

nEnabl eUARTTXxI nt ()
Enables transmit interrupt
None

None

None

None

nDi sabl eUARTRXI nt ()
Disables receive interrupt
None
None
None

None

Interrupt based UART library module (‘C’)

Page 10

Macro
Overview
Input
Output
Side Effects

Stack Requirement

Macro
Overview
Input
Output
Side Effects

Stack Requirement

Macro
Overview
Input
Output
Side Effects

Stack Requirement

nEnabl eUARTRxI nt ()
Enables receive interrupt
None
None
None

None

nSet UARTRxI nt Hi ghPri or ()
Sets receive interrupt priority to high
None

None

None

None

nSet UARTRxI nt LowPri or ()
Sets receive interrupt priority to low
None

None

None

None

Interrupt based UART library module (‘C’)

Page 11

Macro
Overview
Input
Output
Side Effects

Stack Requirement

Macro
Overview
Input
Output
Side Effects

Stack Requirement

Macro
Overview
Input
Output
Side Effects

Stack Requirement

nSet UARTTxI nt Hi ghPri or ()
Sets transmit priority to high
None

None

None

None

nSet UARTTXI nt LowPri or ()
Sets transmit priority to low
None

None

None

None

nBet UART_BRGHHI gh()
Sets BRGH bit in TXSTA
None
None
None

None

Interrupt based UART library module (‘C’)

Page 12

Macro
Overview
Input
Output
Side Effects

Stack Requirement

Macro
Overview
Input
Output
Side Effects

Stack Requirement

Macro
Overview
Input
Output
Side Effects

Stack Requirement

nBet UART_BRGHLow()
Clears BRGH bit in TXSTA
None

None

None

None

mSet UART _SPBRG(i BRGVal ue)

Sets the SPBRG register value to the argument value passed.

None
None
None

None

nSet UARTBaud(i BaudRat e)

Sets the baud rate of UART to the argument value passed.
None

None

None

None

Interrupt based UART library module (‘C’)

Page 13

8. Error and Status Flags

All errors/status are set as a bit flag in structure variable named UARTI nt St at us. Individual bit
flag indicates different errors. Please refer below list for the information.

UARTI nt TxBuf f er Ful |

UARTI nt TxBuf f er Enpt y

UARTI nt RxBuf f er Ful |

UARTI nt RxBuf f er Enpt y

UARTI nt RxOver Fl ow

UARTI nt RXEr r or

This bit is set when transmit buffer is full. When data gets
tranmitted it is cleared.

It is set when transmit buffer is empty. If any item is present in the
buffer this bit is cleared

It indicated receive buffer is full of data. User application starts
reading from receive buffer with the help of shared function, it gets
cleared.

It is set when receive buffer is empty. If any item is received its
cleared.

It indicates receive buffer is full and UART is still receiving the data.
It indicates in between data is missing. It gets cleared once the
receive buffer is being read.

It indicates either OERR or FERR occurred. User
needs to clear this error-bit (UARTIntRxError) in their firmware.

Interrupt based UART library module (‘C’) Page 14

	1. Introduction
	2. Module Features
	3. List of Component Modules
	4. Using the Library Module in a Project
	5. List of Shared Parameters
	Shared Data Bytes
	Shared Functions
	Shared Macros

	6. Functions
	7. Macros
	8. Error and Status Flags

