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CHAPTER 1

Digital representation

To a computer or microprocessor, the world is seen in terms of patterns
of digits. The decimal (or denary) system represents quantities in terms
of the ten digits 0…9. Together with the judicious use of the symbols +, −
and . any quantity in the range ±∞ can be depicted. Indeed non-numeric
concepts can be encoded using numeric digits. For example the American
Standard Code for Information Interchange (ASCII) defines the alphabetic
(alpha) characters A as 65, B = 66…Z = 90 and a = 97, b = 98…z = 122 etc.
Thus the string “Microprocessor” could be encoded as “77, 105, 99, 114,
111, 112, 114, 111, 99, 101, 115, 115, 111, 114”. Provided you know the
context, that is what is a pure quantity and what is text, then just about
any symbol can be coded as numeric digits.1

Electronic circuits are not very good at storing and processing a mul-
titude of different symbols. It is true that the first American digital com-
puter, the ENIAC (Electronic Numerical Integrator And Calculator) in 1946
did its arithmetic in decimal2 but all computers since handle data in bi-
nary (base 2) form. The decimal (base 10) system is really only convenient
for humans, in that we have ten fingers.3 Thus in this chapter we will look
at the properties of binary digits, their groupings and processing. After
reading it you will:

• Understand why a binary data representation is the preferred base for
digital circuitry.

1Of course there are lots of encoding standards, for example the 6-dot Braille code for
the visually impaired.

2As did Babbage’s mechanical computer of a century earlier.
3And ten toes, but base-20 systems are rare.

1



2 THE ESSENCE OF THE 6800 MICROPROCESSOR

• Know how a quantity can be depicted in natural binary, hexadecimal
and binary coded decimal.

• Be able to apply the rules of addition and subtraction for natural binary
quantities.

• Know how to multiply by shifting left.

• Know how to divide by shifting right and propagating the sign bit.

• Understand the Boolean operations of NOT, AND, OR and EOR.

The information technology revolution is based on the manipulation,
computation and transmission of digitized information. This information
is virtually universally represented as aggregrates of binary digits (bits).4

Most of this processing is effected using microprocessors, and it is sober-
ing to reflect that there is more computing power in a singing birthday
card than existed on the entire planet in 1950!

Binary is the universal choice for data representation, as an electronic
switch is just about the easiest device that can be implemented using a
transistor. Such 2-state switches are very small; they change state very
quickly and consume little power. Furthermore, as there are only two
states to distinguish between, a binary depiction is likely to be resistant
to the effects of noise. The upshot of this is that both the packing den-
sity on a silicon chip and switching rate can be very high. Although a
switch on its own does not represent much computing power; five million
switches changing at 100 million times a second, manage to present at
least a facade of intelligence!

The two states of a bit are conventionally designated logic 0 and logic 1
or just 0 & 1. A bit may be represented by two states of any number of
physical quantities; for example electric current or voltage, light, pneu-
matic pressure. Most microprocessors use 0 V (or ground) for state 0 and
3 – 5 V for state 1, but this is not universal. For instance, the RS232 serial

4The binary base is not a new fangled idea invented for digital computer; many cultures
have used base 2 numeration in the past. The Harappān civilisation existed more than 4000
years ago in the Indus river basin. Found in the ruins of the Harappān city of Mohenjo-
Daro, in the beadmakers’ quarter, was a set of stone pebble weights. These were in ratios
that doubled in the pattern, 1,1,2,4,8,16…, with the base weight of around 25g (≈ 1oz).
Thus bead weights were expressed by digits which represented powers of 2; that is in
binary.
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port on your computer uses nominally +12 V for state 0 and −12 V for
state 1.

A single bit on its own can only represent two states. By dealing with
groups of bits, rather more complex entities can be coded. For example
the standard alphanumeric characters can be coded using 7-bit groups of
digits, as shown in Table. 1.1. Thus the ASCII code for “Microprocessor”
becomes:

1001101 1101001 1100011 1110010 1101111 1110000 1110010 1101111
1100011 1100100 1110011 1110011 1101111 1110010

Unicode is an extension of ASCII and with its 16-bit code groups is able
represent characters from many languages and mathematical symbols.

The ASCII code is unweighted, as the individual bits do not signify a
particular quantity; only the overall pattern has any significance. Other
examples are the die code of Fig. ?? on page ?? and the 7-segment code of
Fig. 8.7 on page 186. Here we will deal with natural binary weighted codes,
where the position of a bit within the number field determines its value or
weight. In an integer binary number the rightmost digit is worth 20 = 1,
the next left column 21 = 2 and so on to the nth column which is worth
2n−1. For example the decimal number one thousand nine hundred and
ninety eight is represented as 1×103+9×102+9×101+8×100 or 1998.
In natural binary the same quantity is 1×210+1×29+1×28+1×27+1×
26+0×25+0×24+1×23+1×22+0×21+1×20, or 11111001101b.
Fractional numbers may equally well be represented by columns to the
right of the binary point using negative powers of 2. Thus 1101.11b is
equivalent to 14.75. As can be seen from this example, binary numbers
are rather longer than their decimal equivalent; on average a little over
three times. Nevertheless, 2-way switches are considerably simpler than
10-way devices, so the binary representation is preferable.

An n-digit binary number can represent up to 2n patterns. Most com-
puters store and process groups of bits. For example the first micropro-
cessor, the Intel 4004, handled its data four bits (a nybble) at a time.
Many current processors cope with blocks of 8 bits (a byte), 16 bits (a
word), or 32 bits (a long-word). 64-bit (a quad-word) devices are on the
horizon. These groupings are shown in Table 1.2. The names illustrated
are somewhat de-facto, and variations are sometimes encountered.
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2h b0010

3h b0011

4h b0100

5h b0101

6h b0110
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7-bit  American  Standard  Code  for  Information  Interchange (ASCII)

Table 1.1 Table of 7-bit ASCII characters.
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As in the decimal number system, large binary numbers are often ex-
pressed using the prefixes k (kilo), M (mega) and G (giga). A binary kilo
is 210 = 1024; for example 64 kbyte of memory. In an analogous way, a
binary mega is 220 = 1,048,576; thus a 1.44 Mbyte floppy disk. Similarly
a 2 Gbyte hard disk has a storage capacity of 2 × 230 = 2,147,483,648
bytes. The former representation is certainly preferable.

(0000 0000 0000 0000 0000 0000 0000 0000−1111 1111 1111 1111 1111 1111 1111 1111)
                  (32 bits)     0−4,294,967,295

                  (1 bit)         0−1
(0−1)

                  (4 bits)       0−15

  (0000−1111)

                  (8 bits)       0−255
  (0000 0000−11111 1111)

                  (16 bits)     0−65,535
  (0000 0000 0000 0000−1111 1111 1111 1111)

Bit

Nybble

Byte

Word

Long-word

Table 1.2 Some common bit groupings.

Long binary numbers are not very human friendly. In Table 1.2, binary
numbers were zoned into fields of four digits to improve readability. Thus
the address of a data unit stored in memory might be 1000 1100 0001
0100 0000 1010b. If each group of four can be given its own symbol, 0…9
and A…F, as shown in Table 1.3, then the address becomes 8C140Ah; a
rather more manageable characterization. This code is called hexadeci-
mal, as there are 16 symbols. Hexadecimal (base-16) numbers are a viable
number base in their own right, rather than just being a convenient binary
representation. Each column is worth 160,161,162 . . .16n in the normal
way.5

Binary Coded Decimal is a hybrid binary/decimal code extensively
used at the input/output ports of a digital system (see Chapter ??). Here
each decimal digit is individually replaced by its 4-bit binary equivalent.
Thus 1998 is coded as (0001 1001 1001 1000)BCD. This is very different
from the equivalent natural binary code; even if it is represented by 0s and

5Many scientific calculators, including that in the Accessories group under Windows 95,
can do hexadecimal arithmetic.
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Decimal Natural binary Hexadecimal Binary
00 00000 00 0000 0000
01 00001 01 0000 0001
02 00010 02 0000 0010
03 00011 03 0000 0011
04 00100 04 0000 0100
05 00101 05 0000 0101
06 00110 06 0000 0110
07 00111 07 0000 0111
08 01000 08 0000 1000
09 01001 09 0000 1001
10 01010 0A 0001 0000
11 01011 0B 0001 0001
12 01100 0C 0001 0010
13 01101 0D 0001 0011
14 01110 0E 0001 0100
15 01111 0F 0001 0101
16 10000 10 0001 0110
17 10001 11 0001 0111
18 10010 12 0001 1000
19 10011 13 0001 1001
20 10100 14 0010 0000

Table 1.3 Different ways of representing the quantities decimal 0…20.

1s. As might be expected, arithmetic in such a hybrid system is difficult,
and BCD is normally converted to natural binary at the system input and
processing is done in natural binary before being converted back (see
Program ?? on page ??).

The rules of arithmetic are the same in natural binary6 as they are
in the more familiar base 10 system, indeed any base-n radix scheme.
The simplest of these is addition, which is a shorthand way of totalling
quantities, as compared to the more primitive counting or incrementation
process. Thus 2 + 4 = 6 is rather more efficient than 2 + 1 = 3; 3 + 1 =
4; 4 + 1 = 5; 5 + 1 = 6. However, it does involve memorizing the rules

6Sometimes called 8-4-2-1 code after the weightings of the first four lowest columns.
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of addition.7 In decimal this involves 45 rules, assuming that order is
irrelevant; from 0+ 0 = 0 to 9+ 9 = 18. Binary addition is much simpler
as it is covered by only three rules:

0+ 0 = 0
0+ 1
1+ 0

}
= 1

1+ 1 = 10 (0 carry 1)
Based on these rules, the least significant bit (LSB) is totalized first, passing
a carry if necessary to the next left column. The process ends with the
most significant bit (MSB) column, its carry being the new MSD of the sum.
For example:

   96    Augend
+ 37    Addend

 133    Sum
1 Carries

   1100000    Augend
+ 0100101    Addend

 10000101    Sum
111 Carries

0 1 1248624
1361

(a) Decimal (b) Binary

8
2
1

0
1

0

Just as addition implements an up count, subtraction corresponds to
a down count, where units are removed from the total. Thus 8− 5 = 3 is
the equivalent of 8− 1 = 7; 7− 1 = 6; 6− 1 = 5; 5− 1 = 4; 4− 1 = 3.

The technique of decimal subtraction you are familiar with applies the
subtraction rules commencing from LSB and working to the MSB. In any
given column were a larger quantity is to be taken away from a smaller
quantity, a unit digit is borrowed from the next higher column and given
back after the subtraction is completed. Based on this borrow principle,
the subtraction rules are given by:

0 − 0 = 0
10 − 1 = 1 Borrowing 1 from the higher column
1 − 0 = 1
1 − 1 = 0

For example:

7Which you had to do way back in the mists of time in primary/elementary school!
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   96    Minuend
− 37    Subrahend

   59    Difference
1 Borrows

   1100000    Minuend
− 0100101    Subrahend

   0111011     Difference
11 Borrows

0 1 1248624
1361

(a) Decimal (b) Binary

1 1 1 1

Although this familiar method works well, there are several problems
implementing it in digital circuitry.

• How can we deal with situations where the minuend is larger than the
subtrahend?

• How can we distinguish between positive and negative quantities?
• Can a digital system’s adder circuits be coerced into subtracting?

To illustrate these points, consider the following example:

   37    Minuend
− 96    Subtrahend

   41    Difference  (−59)
1

   0100111    Minuend
− 1100000    Subtrahend

   1000111     Difference  (−0111001)
1

(a) Decimal (b) Binary

Normally when we know that the when Minuend is greater than the
Subtrahend, the two operands are interchanged and a minus sign is ap-
pended to the outcome; that is −(Subtrahend−Minuend). If we do not
swap, as in (a) above, then the outcome appears to be incorrect. In fact 41
is correct, in that this is the difference between 59 (the correct outcome)
and 100. 41 is described as the 10’s complement of 59. Furthermore,
the fact that a borrow digit was generated from the MSD indicates that
the difference is negative, and therefore appears in this 10’s complement
form. Converting from 10’s complement decimal numbers to the ‘nor-
mal’ magnitude form is simply a matter of inverting each digit and then
adding one to the outcome. A decimal digit is inverted by computing its
difference from 9. Thus the 10’s complement of 3941 is −6059:

3941 =⇒ 6058;+1 = −6059
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However, there is no reason why negative numbers should not remain in
this complement form — just because we are not familiar with this type
of notation.

The complement method of negative quantity representation of course
applies to binary numbers. Here the ease of inversion (0→ 1; 1→ 0)
makes this technique particularly attractive. Thus in our example above:

1000111 =⇒ 0111000;+1 = −0111001

Again, negative numbers should remain in a 2’s complement form. This
complement process is reversible. Thus:

complement⇐⇒ normal

Signed decimal numeration has the luxury of using the symbols + and−
to denote positive and negative quantities. A 2-state system is stuck with
1s and 0s. However, looking at the last example gives us a clue on how
to proceed. A negative outcome gives a borrow back out to the highest
column. Thus we can use this MSD as a sign bit, with 0 for + and 1 for −.
This gives 1,1000111b for −59 and 0,01110011b for +59. Although for
clarity the sign bit has been highlighted above using a comma delimiter,
the advantage of this system is that it can be treated in all arithmetic
processes in the same way as any other ordinary bit. Doing this, the
outcome will give the correct sign:

0,1100000    (+96)
1,1011011    (−37)

0,0111011    (+59)
1

0,0100101    (+37)
1,0100000    (−96)

1,1000101     (−59)

(a) Minuend less than subtrahend (b) Minuend greater than subtrahend

1

From this example we see that if negative numbers are in a signed 2’s
complement form, then we no longer have the requirement to implement
hardware subtractors, as adding a negative number is equivalent to sub-
tracting a positive number. Thus A − B = A + (−B). Furthermore, once
numbers are in this form, the outcome of any subsequent processing will
always remain 2’s complement signed throughout.
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There are two difficulties associated with signed 2’s complement arith-
metic. The first of these is overflow. It is possible that adding two positive
or two negative numbers will cause overflow into the sign bit; for instance:

1

(a) Sum of two +ve numbers gives −ve (b) Sum of two −ve numbers gives +ve

1

1,0011   (−13!!!)

0,1011   (+11)
0,1000   (+8)

0,1101   (+3!!!)

1,0101   (−11)
1,1000   (−8)

In (a) the outcome of (+8) + (+11) is −13! The 24 numerical digit has
overflowed into the sign position (actually, 10011b = 19 is the correct
outcome). Example (b) shows a similar problem for the addition of two
signed negative numbers. Overflow can only happen if both operands
have the same sign bits. Detection is then a matter of determining this
situation with an outcome that differs. See Fig. 1.5 for a logic circuit to
implement this overflow condition.

The final problem concerns arithmetic on signed operands with differ-
ent sized fields. For instance:

0,0011001  (+25)
        0,011  (+03)

????
1

0,0011001  (+25)
        1,101  (−03)

????

(a) Extending a positive number (b) Extending a negative number

0,0011100  (+28)
1 1

0,0011001  (+25)
0,0000011  (+03)

0,0011001  (+25)

0,0010110  (+22)
11 1 1 11

1,1111101  (−03)

Both the examples involve adding an 8-bit to a 16-bit operand. Where the
former is positive, the data may be increased to 16 bits by padding with 0s.
The situation is slightly less intuitive where negative data requires exten-
sion. Here the prescription is to extend the data by padding out with 1s.
In the general case the rule is simply to pad out data by propagating the
sign bit left. This technique is known as sign extension.
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Multiplication by the nth power of two is simply implemented by shift-
ing the data left n places. Thus 00101(5) << 01010(10) << 10100(20)
multiplies 5 by 22, where the << operator is used to denote shifting left.
The process works for signed numbers as well:

0,00000011   (  3)
        <<
0,00000110   (  6)
        <<
0,00001100   (12)
        <<
0,00011000   (24)

(a)  +3 × 8 = +24 (b)  −3 × 8 = −24

1,11110100   (−12)

1,11101000   (−24)

1,11111010   ( −6)

1,11111101   ( −3)

        <<

        <<

        <<
0,00000110   (3 x 2)

+  0,00011000   (3 x 8)

    0,00011110   (3 x 10 = 30)

(c)  +3 × 10 = 30

Should the sign bit change polarity, then a magnitude bit has overflowed.
Some computers/microprocessors have a Arithmetic Shift Left process
that signals this situation, as opposed to the standard Logic Shift Left
used in unsigned number shifts.

Multiplication by non-powers of 2 can be implemented by a combina-
tion of shifting and adding. Thus as shown in (c) above, 3× 10 is imple-
mented as (3× 8)+ (3× 2) = (3× 10) or (3 << 3)+ (3 << 1) (see also
Example ??.2.

In a similar fashion, division by powers of 2 is implemented by shifting
rightn places. Thus 1100(12) >> 0110(6) >> 0011(3) >> 0001.1(1.5).
This process also works for signed numbers:

        >>

        >>

        >>

(a)  +15/8 = 1.875 (b)  −15/8 = −1.875

        >>

        >>

        >>

(c)  15/10 = 1.5

1010 1111.0
0001.1

−1010
  0101

−101.0

000.01,11110.001  (−1.875)

1,1100.010   (−3.75)

1,1000.100   (−7.5)

1,0001.000   (−15)0,1111.000   (+15)

0,0111.100   (+7.5)

0,0011.110   (+3.75)

0,0001.111   (+1.875)

Notice that rather than always shifting in 0s, the sign bit should be prop-
agated in from the left. Thus positive numbers shift in 0s and negative
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numbers shift in 1s. This is known as Arithmetic Shift Right as opposed
to Logic Shift Right which always shifts in 0s.

Division by non powers of 2 is illustrated in (c) above. This shows
the familiar long division process used in decimal division. This is an
analagous process to the shift and add technique for multiplication, using
a combination of shifting and subtracting.

Arithmetic is not the only way to manipulate binary patterns. George
Boole8 in the mid-19th century developed an algebra dealing with sym-
bolic processing of logic propositions. This Boolean algebra deals with
variables which can be true or false. In the 1930s it was realised that this
mathematical system could equally well be used to analyze switching net-
works and thus binary logic systems. Here we will confine ourselves to
looking at the fundamental logic operations of this switching algebra.

A    f

0    1
1    0

A f = A

1A f = A

(a) Truth table (b) Alternative logic symbols

Figure 1.1 The NOT operation.

The inversion or NOT operation is represented by overscoring. Thus
f = A states that the variable f is the inverse of A; that is if A = 0 then
f = 1 and if A = 1 then f = 0. In Fig. 1.1(a) this transfer characteristic
is presented in the form of a truth table. By definition, inverting twice

returns a variable to its original state; thus f = f.9

8The first professor of mathematics at Queen’s College, Cork.
9In days of yore when logic circuits were built out of discrete devices, such as diodes,

resistors and transistors, problems due to sneak current paths were rife. In one such lab-
oratory experiment the output lamp was rather dim, and the lecturer in charge suggested
that two NOTs in series in a suspect line would not disturb the logic but would block off
the unwanted current leak. On returning sometime later, the students complained that
the remedy had had no effect. On investigation the lecturer discovered two knots in the
offending wire — obviously not tied tightly enough!
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Logic function implementations are normally represented in an ab-
stract manner rather than as a detailed circuit diagram. The NOT gate
is symbolized as shown in Fig. 1.1(b). The circle always represents inver-
sion in a logic diagram, and is often used in conjunction with other logic
elements, such as in Fig. 1.2(c).

B A   f

0 0   0
0 1   0

A
f = B  A

&

A
f = B  A

(a) Truth table (b) Alternative logic symbols

1 1   1
1 0   0 B

B

(c) NAND

1 1   0

0 0   1
0 1   1
1 0   1

B A   f

B f = B  A
A

B
A

&

f = B  A

Figure 1.2 The AND function.

The AND operator gives an all or nothing function. The outcome will
only be true when every one of the n inputs are true. In Fig. 1.2 two input
variables are shown, and the output is symbolized as f = B · A, where ·
is the Boolean AND operator. The number of inputs is not limited to
two, and in general f = A(0) · A(1) · A(2) · · ·A(n). The AND operator is
sometimes called a logic product, as ANDing (cf. multiplying) any bit with
logic 0 always yields a 0 output.

If we consider B as a control input and A as a stream of data, then
consideration of the truth table shows that the output follows the data
stream when B = 1 and is always 0 when B = 0. Thus the circuit can be
considered to be acting as a valve, gating the data through on command.
The term gate is generally applied to any logic circuit implementing a
fundamental Boolean operator.

Most practical AND gate implementations have an inverting output.
The logic of such implementations is NOT AND, or NAND for short, and
is symbolized as shown in Fig. 1.2(c).

The OR operator gives an anything function. Here the outcome is
true when any input or inputs are true (hence the ≥ 1 label in the logic
symbol). In Fig. 1.3 two inputs are shown, but any number of variables
may be ORed together. ORing is sometimes referred to as a logic sum, and
the + used as the mathematical operator; thus f = B+ A. In an analogous
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B A   f

0 0   0
0 1   1

A
f = B + A

>1

A
f = B + A

(a) Truth table (b) Alternative logic symbols

1 1   1
1 0   1 B

B

(c) NOR

1 1   0

0 0   1
0 1   0
1 0   0

B A   f

B f = B + A
A

B
A

>1

f = B + A

Figure 1.3 The OR operation.

manner to the AND gate detecting all ones, the OR gate can be used to
detect all zeroes. This is illustrated in Fig. 2.16 on page 34 where an 8-bit
zero outcome brings the output of the NOR gate to 1.

Considering B as a control input and A as data (or vice versa), then
from Fig. 1.3(a) we see that the data is gated through when B is 0 and
inhibited (always 1) when B is 1. This is a little like the inverse of the AND
function. In fact the OR function can be expressed in terms of AND using
the duality relationship A + B = B · A. This states that the NOR function
can be implemented by inverting all inputs into an AND gate.

AND, OR and NOT are the three fundamental Boolean operators. There
is one more operation commonly available as an electronic gate; the
Exclusive-OR operator (EOR). The EOR function is true if only one input
is true (hence the =1 label in the logic symbol). Unlike the inclusive-OR,
the situation where both inputs are true gives a false outcome.

B A   f

0 0   0
0 1   1

A
f = B + A

=1

A
f = B + A

(a) Truth table (b) Alternative logic symbols

1 1   0
1 0   1 B

B

(c) ENOR

B f = B + A
A

B
A

=1

f = B + A

1 0   0
1 1   1

0 1   0
0 0   1

B A   f

Figure 1.4 The EOR operation.

If we consider B is a control input and A as data (they are fully inter-
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changeable) then:
• When B = 0 then f = A; that is the output follows the data input.

• When B = 1 then f = A; that is the output is the inverse of the data
input.

Thus an EOR gate can be used as a programmable inverter.
Another useful property considers the EOR function as a logic differ-

entiator. The EOR truth table shows that the gate gives a true output if the
two inputs differ. Alternatively, the ENOR truth table of Fig. 1.4(c) shows
a true output when the two inputs are the same. Thus an ENOR gate can
be considered to be a 1-bit equality detector. The equality of two n-bit
words can be tested by ANDing an array of ENOR gates (see Fig. 2.6 on
page 23), each generating the function Bk ⊕ Ak; that is:

fB=A =
n−1∑
k=0

Bk ⊕ Ak

As a simple example of the use of the EOR/ENOR gates, consider the
problem of detecting sign overflow (see page 10). This occurs if both
the sign bits of word B and word A are the same (SB ⊕ SA) AND the sign
bit of the outcome word C is not the same as either of these sign bits,
say SB ⊕ SC. The logic diagram for this detector is shown in Fig. 1.5 and
implements the Boolean function:

(SB ⊕ SA) · (SB ⊕ SC)

SA

BS

CS

S   = SA B

S   = SC B

V

  is true if:
(Sign A = Sign B) AND
(Sign C = Sign B)

V

Figure 1.5 Detecting sign overflow.

Finally, the EOR function can be considered as detecting when the num-
ber of true inputs are odd. By cascadingn+1 EOR gates, the overall parity
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function is true if the n-bit word has an odd number of ones. Some mea-
sure of error protection can be obtained by adding an additional bit to
each word, so that overall the number of bits is odd. This oddness can
be checked at the receiver and any deviation indicates corruption (see
page ??).



CHAPTER 2

Logic circuitry

We have noted that digital processing is all about transmission, manipula-
tion and storage of binary word patterns. Here we will extend the concepts
introduced in the last chapter as a lead into the architecture of the com-
puter and microprocessor. We will look at some relevant logic functions,
their commercial implementations and some practical considerations.

After reading this chapter you will:

• Understand the properties and use of active pull-up, open-collector and
3-state output structures.

• Appreciate the logic structure and function of the natural decoder.

• See how a MSI implementation of an array of ENOR gates can compare
two words for equality.

• Understand how a 1-bit adder can be constructed from gates, and can
be extended to deal with the addition of two n-bit words.

• Appreciate how the function of an ALU is so important to a pro-
grammable system.

• Be aware of the structure and utility of a read-only memory (ROM).

• Understand how two cross-coupled gates can implement a R S latch.

• Appreciate the difference between a D latch and D flip flop.

• Understand how an array of D flip flops or latches can implement a
register.

• See how a serial connection of D flip flops can perform a shifting
function.

• Understand how a D flip flop can act as a frequency divide by two, and
how a cascade of these can implement a binary count.

17
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• See how an ALU/PIPO register can implement an accumulator processor
unit.

• Appreciate the function of a RAM.

The first integrated circuits, available at the end of the 1960s, were
mainly NAND, NOR and NOT gates. The most popular family of logic
functions was, and still is, the 74 series transistor transistor logic (TTL);
introduced by Texas Instruments and soon copied by all the major major
semiconductor manufacturers.

1

2

3

4

5

6

78

9

10

11

12

13

14

Vcc

GND 1A

1B

1Y

2A

2B

2Y

4B

4A

4Y

3B

3A

3Y

[74LS00]
&1A

1B
1Y

(1)

(2)
(3)

2B

2A

(5)

(4)
(6)

2Y

3B

3A

(10)

(9)
(8)

3Y

4B

4A

(13)

(12)
(11)

4Y

(a)  DIL package (b)  ANSI/IEC logic symbol

Figure 2.1 The 74LS00 quad 2-I/P NAND package.

The 74LS001 comprises four 2-input NAND gates in a 14-pin package.
The integrated circuit (IC) is powered with a 5 ± 0.25 V supply between
VCC

2 (usually about 5 V) and GND.The logic outputs are 2.4 – 5 V High and
0 – 0.4 V for Low. The logic outputs are 2.4 – 5 V High and 0 – 0.4 V for Low.

1The LS stands for Low-power Schottky transistor. There are very many other versions,
such as ALS (Advanced LS), AS (Advanced Schottky) and HC (High-speed Complementary
metal-oxide transistor — CMOS). These family variants differ in speed and power con-
sumption, but for a given number designation have the same logic function and pinout.

2For historical reasons the positive supply on logic ICs are usually designated as VCC;
the C referring to a bipolar’s transistor Collector supply. Similarily field-effect circuitry
sometimes use the designation VDD for Drain voltage. The zero reference pin is normally
designated as the ground point (GND), but sometimes the VEE (for emitter) or VSS (for
Drain) label is employed.



LOGIC CIRCUITRY 19

Most IC logic families require a 5 V supply, but 3 V versions are becoming
available, and some CMOS implementations can operate with a range of
supplies between 3 V and 15 V.

The 74LS00 IC is shown in Fig. 2.1(a) in its Dual In-Line (DIL) package.
Strictly it should be described as a positive-logic quad 2-I/P NAND, as the
electrical equivalent for the two logic levels 0 and 1 are Low (L is around
ground potential) and High (H is around Vcc, usually about 5 V). If the rela-
tionship 0→ H; 1→ L is used (negative logic) then the 74LS00 is actually
a quad 2-I/P NOR gate. The ANSI/IEC3 logic symbol of Fig. 2.1(b) denotes
a Low electrical potential by using the polarity symbol. The ANSI/IEC
NAND symbol shown is thus based on the real electrical operation of the
circuit. In this case the logic coincides with a positive-logic NAND func-
tion. The & operator shown in the top block is assumed applicable to the
three lower gates.

The output structure of a 74LS00 NAND gate is active pull-up. Here
both the High and Low states are generated by connection via a low-
resistance switch to Vcc or GND respectively. In Fig. 2.2(a) these switches
are shown for simplicity as metallic contacts, but they are of course tran-
sistor derived.

+Vcc

Phase splitter

Internal logic state

High/Low

(a) Push/pull  (Totem-pole) (b) Open-collector  (open-drain)

Internal logic state

Off/Low

(c) Three-state

Internal logic state

Phase splitter

+Vcc

High/Low/Off

EN

Figure 2.2 Output structures.

Logic circuits, such as the 74LS00, change output state in around
10 nanoseconds.4 To be able to do this, the capacitance of any intercon-
necting conductors and other logic circuits’ inputs must be rapidly dis-
charged. Mainly for this reason, active pull-up (sometimes called totem-
pole) outputs are used by most logic circuits. There are certain cir-
cumstances where alternative output structures have some advantages.

3American National Standards Institution/International Electrotechnical Commission.
4A nanosecond is 10−9 s, so 100,000,000 transitions each second is possible.
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The open-collector (or open-drain) configuration of Fig. 2.2(b) provides a
‘hard’ Low state, but the High state is in fact an open-circuit. The High-
state voltage can be generated by connecting an external resistor to either
Vcc or indeed to a different power rail. Non-orthodox devices, such as re-
lays, lamps or light-emitting diodes, can replace this pull-up resistor. The
output transistor is often rated with a higher than usual current and/or
voltage rating for such purposes.

Sig
_3

Sig
_2

Sig
_1

Sig
_0

+V

0 0 0

0

1

0

To processor

Off Off OffOff/0/Off
RL

Figure 2.3 Open-collector buffers driving a party line.

The application of most interest to us here is illustrated in Fig. 2.3.
Here four open-collector gates share a single pull-up resistor. Note the use
of the symbol to denote an open-collector output. Assume that there
are four peripheral devices, any of which may wish to attract the attention
of the processor (eg. computer or microprocessor). If this processor has
only one Attention pin, then the four Signal lines must be wire-ORed
together as shown. With all Signals inactive (logic 0) the outputs of all
buffer NOT gates are off (state H), and the party line is pulled up to +V
by RL. If any Signal line is activated (logic 1), as in Sig_1, then the output
of the corresponding buffer gate goes hard Low. This pulls the party line
Low, irrespective of the state of the other signal lines, and thus interrupts
the processor.

As an example of the use of this structure, consider the situation de-
picted in Fig. 2.4. Here a master controller wishes to read one of several
devices, all connected to this master over a set of party lines. As this data
highway or Data bus is a common resource, so only the selected device
can be allowed access to the bus at any one time. The access has to be
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Figure 2.4 Sharing a bus.

withdrawn immediately the data has been read, so that another device
can use the resource. As shown in the diagram, each Thing connected to
the bus outputs, designated by the symbol. When selected, the active
logic levels will drive the bus lines. The 74LS244 octal (×8) 3-state buffer
shown in Fig. ??(a) on page ?? has high-current outputs (designated by
the symbol) specifically designed to charge/discharge the capacitance
associated with long bus lines.

Integrated circuits with a complexity of up to 12 gates are categorised
as Small-Scale Integration (SSI). Gate counts upwards to 100 on a single
IC are Medium-Scale Integration (MSI), up to 1000 are known as Large-
Scale Integration (LSI) and over this, Very Large-Scale Integration (VLSI).
Memory chips and microprocessors are examples of this latter category.

The NAND gate networks shown in Fig. 2.5 are typical MSI-complexity
ICs. Remembering that the output of a NAND gate is logic 0 only when
all its inputs are logic 1 (see Fig. 1.2(c) on page 13) then we see that for
any combination of the Select inputs B A (21 20) in Fig. 2.5(a) only one gate
will go to logic 0. Thus output Y2 will be activated when B A = 10. The
associated truth table shows the circuit decodes the binary address B A so
that address n selects output Yn. The 74LS139 is described as a dual 2 to
4-line natural decoder. Dual because there are two such circuits in the
one chip. The symbol X/Y denotes converting code X (natural binary) to
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(a) The 74LS139 dual 2- to 4-line decoder.

(b) The 74LS138 3- to 8-line decoder

(2,14)

(3,13)

(1,15)

(4,12)

(5,11)

(6,10)

(9,7)

1    X X X    1  1  1  1  1  1  1  1

0    1 1 1    1  1  1  1  1  1  1  0
0    1 1 0    1  1  1  1  1  1  0  1
0    1 0 1    1  1  1  1  1  0  1  1
0    1 0 0    1  1  1  1  0  1  1  1
0    0 1 1    1  1  1  0  1  1  1  1
0    0 1 0    1  1  0  1  1  1  1  1
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0    0 1   1  0  1  1
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G    B A   Y  Y  Y  Y20 1 3

Figure 2.5 The 74LS138 and ’139 MSI natural decoders.

code Y (unary — one of n). The Enable input G is connected to all gates in
parallel. Thus the decoder function only operates if G is Low (logic 0). If G
is High, then irrespective of the state of B A (the X entries in the truth table
denote a ‘don’t care’ situation) all outputs remain deselected — logic 1. An
example of the use of the 74LS139 is given in Fig. 2.20.
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The 74LS138 of Fig. 2.5(b) is similar, but implements a 3 to 8-line de-
coder function. The state of the three address lines C B A (22 21 20) n se-
lects one only of the eight outputs Yn. The 74LS138 has three Gate inputs
which generate an internal Enable signal G2B · G2A · G1. Only if both G2A
and G2B are Low and G1 is High will the device be enabled. The 74LS138 is
used several times in Chapter ?? to decode microprocessor Address lines,
for example Fig. ?? on page ??.

P7
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(18)
P7=Q7

(15)

(16)
P6
Q6

P6=Q6

(13)

(14)
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P4
Q4

P4=Q4
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(9)
P3
Q3

P3=Q3
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(7)
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Q2

P2=Q2

(4)

(5)
P1
Q1

P1=Q1

(2)

(3)
P0
Q0

P0=Q0

(1)G
Enable

P=Q
(19)

Figure 2.6 The 74LS688 octal equality detector.

A large class of ICs implement arithmetic operations. The gate array
illustrated in Fig. 2.6 detects when the 8-bit byte P7…P0 is identical to the
byte Q7…Q0. Eight ENOR gates each give a logic 1 when its two input bits
Pn, Qn are identical, as described on page 15. Only if all eight bit pairs
are the same, will the output NAND gate go Low. The 74LS688 Equality
comparator also has a direct input G into this NAND gate, acting as an
overall Enable signal.
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The ANSI/IEC logic symbol, shown in Fig. ?? uses the COMP label to
denote the arithmetic comparator function. The output is prefixed with
the numeral 1, indicating that its operation P=Q is dependent on any input
qualifying the same numeral; that is G1. Thus the active-Low Enable input
G1 gates the active-Low output, 1P=Q.

One of the first functions beyond simple gates to be integrated into a
single IC was that of addition. The truth table of Fig. 2.7(a) shows the Sum
(S) and Carry-Out (C1) resulting from the addition of the two bits A and B
and any Carry-In (C0). For instance row 6 states that adding two 1s with
a Carry-In of 0 gives a Sum of 0 and a Carry-Out of 1 (1+ 1+ 0 =10). To

      A B C      S C

0    0 0 0      0 0
1    0 0 1      1 0
2    0 1 0      1 0
3    0 1 1      0 1
4    1 0 0      1 0
5    1 0 1      0 1
6    1 1 0      0 1
7    1 1 1      1 1

0 1 A
B
C0

0C

A
B

0C

A
B

0C

A
B

0C

A
B

0C

A
B

0C

A
B

Sum out

Carry out

S

C1

(a)  One-bit addition
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(b)  The 74LS283 four-bit adder
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Figure 2.7 Addition.
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implement this row we require to detect the pattern 1 1 0; that is A · B · C0;
which is gate 6 in the logic diagram. Thus we have by ORing all applicable
patterns together for each output:

S = (A · B · C0)+ (A · B · C0)+ (A · B · C0)+ (A · B · C0)
C1 = (A · B · C0)+ (A · B · C0)+ (A · B · C0)+ (A · B · C0)

Using such a circuit for each column of a binary addition, with the
Carry-Out from column k−1 feeding the Carry-In of column kmeans that
the addition of any two n-bit words can be simultaneously implemented.
As shown in Fig. 2.7(b), the 74LS283 adds two 4-bit nybbles in 25 ns. In
practice the final Carry-Out C4 is generated using additional circuitry to
avoid the delays inherent on the carries rippling though each stage from
the least to the most significant digit. n 74LS283s can be cascaded to
implement addition for words of 4×nwidth. Thus two 74LS283s perform
a 16-bit addition in 45 ns; the extra time being accounted for by the carry
propagation between the two units.

Adders can of course be coaxed into subtraction by inverting the min-
uend and adding one, that is 2’s complementation. An Adder/Subtractor
circuit could be constructed by feeding the minuend word through an
array of EOR gates acting as programmable inverters (see Fig. 1.4(a) on
page 14). The Mode line Add/Sub in Fig. 2.8 that controls these inverters
also feeds the Carry-In, effectively adding one when in the Subtract mode.

Extending this line of argument leads to the Arithmetic Logic Unit
(ALU). An ALU is a circuit which can undertake a selection of arithmetic
and logic processes on input data as controlled by Mode inputs. The
74LS382 in Fig. 2.9 processes two 4-bit operands in eight ways, as con-
trolled by the three Select bits S2 S1 S0 and tabulated in Fig. 2.9(a). Besides
addition and subtraction, the logic operations of AND, OR and EOR are
supported. The 74LS382 even generates the 2’s complement overflow
function (see page 10).

As we shall see, the ALU is the heart of the computer and micropro-
cessor architectures. By feeding the Select inputs with a series of mode
words, a program of operations can be performed by the ALU. Such opera-
tion codes are stored in an external memory, and are accessed sequentially
by the computer’s control circuits.
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B12B3B4BA4 3A A2 A1

0C

ADD/SUB

Word BWord A

S1S2S3S4

Sum/Difference

C4

Carry/Borrow out

Figure 2.8 Implementing a programmable adder/subtractor.

Sequences of program operation codes are normally stored in an LSI
Read-Only Memory (ROM). Consider the architecture illustrated in Fig. 2.10.
This is essentially a 3 to 8-line decoder driving an 8 × 2 array of diodes.
The 3-bit address selects only row n for each input combination n. If a
diode is connected to this row, then it conducts and brings the appropri-
ate column Low. The inverting 3-state output buffer consequently gives
a High for each connected diode and Low where the link is broken. The
pattern of diode links then defines the output code for each input. For
illustrative purposes, the structure has been programmed to implement
the 1-bit full adder of Fig. 2.7(a), but any two functions of three variables
can be generated.

The diode matrix look-up table shown here is known as a Read-Only
Memory (ROM), as its ‘memory’ is in the diode pattern, which is pro-
grammed in when the device is manufactured. Early devices, which were
typically decoder/32 × 8 matrices, usually came in user-programmable
versions in which the links were implemented with fusible links. By using
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0  0  0    Clear    (F=0000)
0  0  1    Subtract      (B-A)
0  1  0    Subtract      (A-B)
0  1  1    Add            (A+B)
1  0  0    EOR          (A + B)
1  0  1    OR            (A + B)
1  1  0    AND          (A   B)
1  1  1    Preset   (F=1111)

  OperationS2 1S S0

A3 A2 A1 A0 B0B1B2B3 S2 S0S1

F3 F2 F1 F0

Word  A Word  B Mode Select  S

Function Output  F

ALU

Carry-Out

Overflow

(17) (19) (1) (3) (16) (18) (2) (4) (7) (6) (5)

(12) (11) (9) (8)

(a)  Function table (b)  Logic diagram/pinning

C(n+4) OVR

(14) (13)

C(n)

(15)

Carry-In

[74LS382]

Figure 2.9 The 74LS382 ALU.

a high voltage, a selection of diodes could be taken out of contact. Such
devices are called Programmable ROMs (PROMs).

Fuses are messy when implementing the larger sizes of VLSI PROM
necessary to store computer programs. For example, the 2764 PROM
shown in Fig. 2.11 has the equivalent of 65,536 fuse/diode pairs, and this
is a relatively small device capable of storing 8192 bytes of memory. The
2764 uses electrical charge on the floating gate of a metal-oxide field-effect
transistor (MOSFET) as the programmable link, with another MOSFET to
replace the diode. Charge can be tunnelled onto this isolated gate by,
again, using a high voltage. Once on the gate, the electric field keeps the
link MOSFET conducting. This charge takes many decades to leak away,
but this can be dramatically reduced to about 30 minutes by exposure to
intensive ultra-violet radiation. For this reason the 2764 is known as an
Erasable PROM (EPROM). When an EPROM is designed for reusability, a
quartz window is integrated into the package, as shown in Fig. 2.11. Pro-
gramming is normally done externally with special equipment, known as
PROM programmers, or colloquially as PROM blasters. Versions without
windows are referred to as One-Time Programmable ROMs (OTPROMs), as
they cannot easily be erased once programmed. They are however, much
cheaper to produce and are thus suitable for small to medium-scale pro-
duction runs.
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Figure 2.10 A ROM-implemented 1-bit adder.

There are PROM structures which can be erased electrically, often in
situe in the circuit. These are known variously as Electrically-Erasable
PROMs (EEPROMs) or flash memories. In the former case a large negative
pulse at VPP causes the captured electrons on the buried gate to tunnel
back out. Generally the negative voltage is generated on the chip, which
saves having to provide an additional external supply. The flash variant
of EEPROM relies on hot electron injection rather than tunneling to charge
the floating gate. The geometry of the cell is approximately half the size
of a conventional EEPROM cell, which increases the memory density. Pro-
gramming voltages are also somewhat lower.

Most modern EPROM/EEPROMs are fairly fast, taking around 150 ns to
access and read. Programming is slow, at perhaps 10 ms per word, but
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Figure 2.11 The 2764 Erasable PROM.

this is an infrequent activity. Flash EEPROM programs around 1000 times
faster, in around 10µs per cell.

All the circuits shown thus far are categorised as combinational logic.
They have no memory in the sense that the output simply depends only
on the present input, and not the sequence of events leading up to that
input. Logic circuits, such as latches, counters, registers and read/write
memories are described as sequential logic. Their output not only de-
pends on the current input, but the sequence of prior inputs.

Consider a typical door bell push-switch. When you press such a switch
the bell rings, and it stops as soon as you release it. This switch has no
memory.
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Figure 2.12 The R S latch.

Compare this with a standard light switch. Set the switch and the light
comes on. Moreover it remains on when you remove the stimulus (usually
your finger!). To turn the light off you must reset the switch. Again it
remains off when the input is taken away. This type of switch is known
as a bistable, as it has two stable states. Effectively it is a 1-bit memory
cell, that can store either an on or off state indefinitely.

A read-write memory, such as the 6264 device of Fig. 2.21, implements
each bistable cell using two cross-coupled transistors. Here we are not
concerned with this microscopic view. Instead, consider the two cross-
coupled NOR gates of Fig. 2.12. Remembering from Fig. 1.3(c) on page 14
that any logic 1 into a NOR gate will always give a logic 0 output irrespec-
tive of the state of the other inputs, allows us to analyse the circuit:

• If the S input goes to 1, then output Q goes to 0. Both inputs to the
top gate are now 0 and thus output Q goes to 1. If the S input now
goes back to 0, then the lower gate remains 0 (as the Q feedback is 1)
and the top gate output also remains unaltered. Thus the latch is set



LOGIC CIRCUITRY 31

by pulsing the S input.
• If the R input goes to 1, then output Q goes to 0. Both inputs to the

bottom gate are now 0 and thus output Q goes to 1. If the R input now
goes back to 0, then the upper gate remains 0 (as the Q feedback is 1)
and the bottom gate output also remains unaltered. Thus the latch is
reset by pulsing the R input.

In the normal course of events — that is assuming that the R and S
inputs are not both active at the same time5 then the two outputs are
always complements of each other, as indicated by the logic symbol of
Fig. 2.12(b).

S

R

Q

Q

+V

+V

Figure 2.13 Using a R S latch to debounce a switch.

There are many bistable implementations. For example, replacing the
NOR gates by NAND gives a R S latch, where the inputs are active on a
logic 0. The circuit illustrated in Fig. 2.13 shows such a latch used to de-

5If they where, then both Q and Q go to 0. On relaxing the inputs, the latch will end up
in one of its stable states, depending on the relaxation sequence. The response of a latch
to a simultaneous Set and Reset is not part of the latch definition, shown in Fig. 2.12(a),
but depends on its implementation. For example, trying to turn a light switch on and off
together could end in splitting it in two!
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bounce a mechanical switch. Manual switches are frequently used as in-
puts to logic circuits. However, most metallic contacts will bounce off the
destination contact many times over a period of several tens of millisec-
onds before settling. For instance, using a mechanical switch to interrupt
a computer/microprocessor will give entirely unpredictable results.

In Fig. 2.13, when the switch is moved up and hits the contact the latch
is set. When the contact is broken, the latch remains unchanged, provided
that the switch does not bounce all the way back to the lower contact. The
state will remain Set no matter how many bounces occur. By symmetry,
the latch will reset when the switch is moved to the bottom contact, and
remain in this Reset state on subsequent bounces.

C  D      Q

1  0      0
1  1      1

0  X      Q

(transparent)

(freeze)
C1

1D

C  D      Q

    0       0
    1       1

0  X       Q
1  X       Q
    X       Q

(sample)

(hold)

(a)  D latch truth table (b)  D latch logic diagram

(c)  D flip flop truth table (d)  D flip flop logic diagram

C1

1D

Figure 2.14 The D latch and flip flop.

The D latch is an extension to the R S latch, where the output follows
the D (Data) input when the C (Control) input is active (logic 1 in our ex-
ample) and freezes when C is inactive. The D latch can be considered to
be a 1-bit memory cell where the datum is retained at its value at the end
of the sample pulse.

In Fig. 2.14(b) the dependency of the Data input with its Control is
shown by the symbology C1 and 1D. The 1 prefix to D shows that it de-
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pends on any signal with a 1 suffix, in this case the C input. That is C1
clocks in the 1D data.

A flip flop is also a 1-bit memory cell, but the datum is only sampled
on an edge of the control (known here as the Clock) input. The D flip flop
described in Fig. 2.14(c) is triggered on a / (as illustrated in the truth
table as ↑), but \ clocked flip flops are common. The edge-triggered
activity is denoted as on a logic diagram, as shown in Fig. 2.14(d).

The 74LS74 shown in Fig. ?? on page ?? has two D flip flops in the
one SSI circuit. Each flip flop has an overriding Reset (R) and Set (S) in-
put, which are asynchronous — that is not controlled by the Clock input.
MSI functions include arrays of four, six and eight flip flops all sampling
simultaneously with a common Clock input.
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Figure 2.15 The 74LS377 octal D flip flop array.

The 74LS377 shown in Fig. 2.15 consists of eight D flip flops all clocked
by the same single Clock input C, which is gated by input G. Thus the 8-bit
data 8D…1D is clocked in on the / of C if G is Low. In the ANSI/ISO
logic diagram shown in Fig. ?? on page ??, this dependency is indicated as
G1→1C2→2D, which states that G enables the Clock input, which in turn
acts on the Data inputs.

Arrays of D flip flops are known as registers; that is read/write mem-
ories that hold a single word. The 74LS377 is technically known as a
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parallel-in parallel-out (PIPO) register, as data is entered in parallel (that
is all in one go) and is available to read at one go. D latch arrays are also
available, the 74LS373 octal PIPO register shown in Fig. ?? on page ?? is
typical.

A pertinent example of the use of a PIPO register is shown in Fig. 2.16.
Here an 8-bit ALU is coupled with an 8-bit PIPO register, accepting as its
input the ALU output, and in turn feeding one input word back to the ALU.
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Figure 2.16 An 8-bit ALU-accumulator processor.
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This register accumulates the outcome of a series of operations, and is
sometimes called an Accumulator or Working register. To describe the
operation of this circuit, consider the problem of adding two words A
and B. The sequence of operations, assuming the ALU is implemented by
cascading two 74LS382s might be:

1. Program step.

• Mode = 000 (Clear).

• Pulsing Execute loads the ALU output (0000 0000) into the regis-
ter.

• Data out is zero (0000 0000).

2. Program step.

• Fetch Word A down to the ALU input.

• Mode = 011 (Add).

• / \ Execute to load the ALU output (Word A + zero) into the
register.

• Data out is Word A.

3. Program step.

• Fetch Word B down to the ALU input.

• Mode = 011 (Add).

• / \ Execute to load the ALU output (Word B + Word A) into
the register.

• Data out is Word B plus Word A.

The sequence of operation codes, that is 000 — 100 — 100 constitutes
the program. In practice each instruction would also contain the address
(where relevant) in memory of the data to be processed; in this case the
locations of Word A and Word B.

Each outcome of a process will have associated properties. For exam-
ple it may be zero, be negative (most significant bit is 1), have a carry-out
or 2’s complement overflow. Such properties may be significant in the
future progress of the program. In the diagram four D flip flops, clocked
by Execute, are used to grab this status information. In this situation the
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flip flops are usually known as flags (or sometimes semaphores). Thus we
have C, N, Z and V flags, which form a Code Condition or Status register.

There are various other forms of register. The 4-bit shift register of
Fig. 2.17(a) is an example of a serial-in serial-out (SISO) structure. In this
instance the data held in thenth D flip flop is presented to the input of the
(n+1)th stage. On receipt of a clock pulse (or shift pulse in this context),
this data moves into this (n + 1)th flip flop, i.e. effectively moving from
stage n to stage n + 1. As all flip flops are clocked simultaneously, the
entire word moves once right on each shift pulse.

In the example of Fig. 2.17 a 4-bit external data nybble is fed into the
left-most stage bit by bit as synchronised by the clock. After four shift
pulses the serial 4-bit word is held in the register. To get it out again,
four further shifts moves the word bit by bit out of the shift register; this
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is SISO. If the individual flip flops are accessible then the data can be
accessed at one go, that is serial-in parallel-out (SIPO).

The logic diagram of Fig. 2.17(b) uses the → symbol affected by the
clock input to indicate the shift action, C1→. SRG4 indicates a Shift ReG-
ister 4-stage architecture.

Other architectures include parallel-in serial-out which is useful for
parallel to serial conversion. Counting registers (counters) increment or
decrement on each clock pulse, according to a binary sequence. Typically
an n-bit counter can perform a count of 2n states. Some can also be
loaded in parallel and thus act as a store.

C1

1D

T T T T T

Input

Output

a b

a b c d e

a b c d e

Q

Q

Figure 2.18 The T flip flop.

Consider the negative-edge triggered D flip flop shown in Fig. 2.18
where its Q output is connected back to the 1D input. On each \
at the Clock input C1 the data at the 1D input will be latched in to appear
at the Q output. As it is the complement of this output that is fed back
to the input, then the next time the flip flop is clocked the opposite logic
state will be latched in. This constant alternation is called toggling and is
depicted on the diagram by T. The output waveform resulting from a con-
stant frequency input pulse train is half this frequency. This waveform is
a precision squarewave, provided that the input frequency remains con-
stant. This T flip flop is sometimes known as a binary or a divide-by-2.

T flip flops can of course be cascaded, as shown in Fig. 2.19(a). Here
four \ triggered flip flops are chained, with the output of binary n
clocking binary n+1. Thus if the input Count frequency was 8 KHz, then
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Figure 2.19 A modulo-16 ripple counter.

QA would be a 4 kHz square waveform and similarily QB would measure
in at 2 kHz, QC at 1 kHz, QD at 500 Hz.

The waveform QA of Fig. 2.19(b) was derived in the same manner as in
Fig. 2.18. QB is toggled on each \ of QA and likewise for the subsequent
outputs. Marking a high as logic 1 and a low as logic 0 gives the 24 (16)
positive-logic binary patterns as time advances, with the count rolling
over back to state 0 on a continual basis. Each pattern remains in the
register until the next event clocks the chain; an event being defined in
our example as a \ at Count. Examining the sequence shows it to be a
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natural 8-4-2-1 binary up count, incrementing from 0000b to 1111b. In
fact the circuit is a modulo-16 binary counter. A modulo-n count is the
sequence taking only the first n numbers into account.6

In theory there is no limit to the number of stages that can be cascaded.
Thus using eight T flip flops would give a modulo-256 (28) counter. In
practice there is a small propagation delay through each stage and this
limits the ultimate frequency. For example the 74LS74 dual D flip flop
has a maximum propagation from an event at its Clock input to output
of 25 ns. The maximum toggling frequency for a single stage, such as in
Fig. 2.18, is given as 25 MHz. An 8-stage counter thus has a maximum
ripple-through time of 200 ns. If such a ripple counter were clocked at
the resulting 5 MHz ( 1

200 ns ) then no sooner than one particular code pat-
tern has stabilized then the next one would begin to appear. This is only
really a problem if the various states of the counter are to be decoded
and used to control other logic. The decoding logic, such as shown in
Fig. 2.20, may inadvertently respond to these short transient states and
cause havoc. In such cases more sophisticated synchronous counter con-
figurations are more applicable where the flip flops are clocked simulta-
neously and steered by the appropriate logic configuration to count in the
desired sequence.

The circuit illustrated here implements an up count. If the complement
Q lines are used as the outputs, but with the clocking arrangements re-
maining the same, then the count sequence will decrement, that is a down
count. Likewise using / triggered flip flops, such as the 74LS74 dual
flip flop (see Fig. 2.20), are used as the storage element, then the count will
be down. It is easily possible to use some simple logic to combine the two
functions to produce a programmable up/down counter. It is also feasi-
ble to provide logic to load the flip flop array in parallel with any number
and then count up or down from that point. Such an arrangement can be
thought of as a parallel-in counting register.

As well as the more obvious use of a counter register to totalize the
number of events, such as cans of peas coming along a conveyor belt,
there are other uses. One of these is to time a sequence of operations. In
Fig. 2.20 a modulo-4 counter is used to address one section of a 74LS139

6Mathematically any number can be converted to its modulo-n equivalent by dividing
by n. The remainder, or modulus, will be a number from 0 to n− 1.
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Figure 2.20 Generating timing waveforms.

2 to 4-line decoder, see Fig. 2.5(a). This detects each of the four states of
the counter, and the outcome is four time-separated outputs that can be
used to sequence, say, the operation of a computer’s control section logic.
As a practical point, the complement Q flip flop outputs have been used
to address the decoder to compensate for the / triggered action that
would normally give a down count. Larger counters with the appropriate
decoding circuitry can be used to generate fairly sophisticated sequences
of control operations.

The term register is commonly applied to a read/write memory that
can store a single binary word, typically 4 – 64 bits. Larger memories can
be constructed by groupingn such registers and selecting one ofn. Such a
structure is sometimes known as a register file. For example, the 74LS670
is a 4×4 register file with a separate 4-bit data input and data output and
separate 2-bit address. This means that any register can be read at any
time, independently of any concurrent writing process.

Larger read/write memories are normally known as read-write Random-
Access Memories, or RAMs for short. The term random-access indicates
that any memory word may be selected with the same access time, ir-
respective of its position in the memory matrix.7 This contrasts with a
magnetic tape memory, where the reel must be wound to the sector in

7Strictly speaking, ROMs should also be described as random access, but custom and
practice has reserved the term for read-write memories.
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Figure 2.21 The 6264 8196× 8 RAM.

question — and if this is at the end of the tape!

For our example, Fig. 2.21 shows the 6264 RAM. This has a matrix
of 65,536 (216) bistables organized as an array of 8192 (213) words of
8 bits. Word n is accessed by placing the binary pattern of n on the 13-
bit Address pins A12…A0.

When in the Read mode (Read/Write = 1), wordnwill appear at the eight
data outputs (I/O7…I/O0) as determined by the state n of the address
bits. The A symbol at the input/outputs (as was the case in Fig. 2.11)
indicates this addressibility. In order to enable the 3-state output buffers,
the Output Enable input must be Low.

The addressed word is written into if R/W is Low. The data to be written
into word n is applied by the outside controller to the eight I/O pins. This
bi-directional traffic is a feature of computer buses; for example see Fig. ??
on page ??.
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In both cases, the RAM chip as a whole is enabled when CS1 is Low
and CS2 is High. Depending on the version of the 6264, this access from
enabling takes around 100 – 150 ns. There is no upper limit to how long
the data can be held, provided power is maintained. For this reason, the
6264 is described as static (SRAM). Rather than using a transistor pair
bistable to implement each bit of storage, data can be stored as charge on
the gate-source capacitance of a single field-effect transistor. Such charge
leaks away in a few milliseconds, so needs refreshed on a regular basis.
Dynamic RAMs (DRAMs) are cheaper to fabricate than SRAM equivalents
and obtainable in larger capacities. They are usually found where very
large memories are to be implemented, such as found in a personal com-
puter. In such situations, the expense of refresh circuitry is more than
amortized by the reduction in cost of the memory devices.

Both types of Read/Write memories are volatile, that is they do not re-
tain their contents if power is removed. Some SRAMs can support existing
data at a very low holding current and lower than normal power supply
voltage. Thus a backup battery can be used in such circumstances to keep
the contents intact for many months.



CHAPTER 3

Stored program processing

If we take the Arithmetic Logic Unit (ALU)/data register pair depicted in
Fig. 2.16 on page 34 and feed it with function codes, then we have in
essence a programmable processing unit. These command codes may be
stored in digital memory and constitute the system’s program. By fetch-
ing these instructions down one at a time we can execute this program.
Memory can also hold data on which the ALU operates. This structure,
together with its associated data paths, decoders and logic circuitry is
known as a digital computer.

In Part II we will see that microprocessor architecture is modelled on
that of the computer. As a prelude to this we will look at the architecture
and operating rhythm of the computer structure and some characteristics
of its programming. Although this computer is strictly hypothetical, it has
been very much ‘designed’ with our book’s target microprocessor in mind.

After reading this chapter you will:

• Appreciate the von Neumann structure, with its common Data highway
connecting memory, input, output and processor.

• Understand the fetch and execute rhythm and its interaction with
memory and the Central Processing Unit’s (CPU’s) internal registers.

• Understand the concept of an address as a pointer to where data or
program code is stored in memory.

• Comprehend the structure of an instruction and appreciate that the
string of instructions necessary to implement the task is known as a
program.

• Have an understanding of a basic instruction set, covering data move-
ment, arithmetic, logic and conditional branching categories.

43
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• Understand how Immediate, Direct and Indirect address modes permit
an instruction to target an operand for processing.

• To be able to write short programs using a symbolic assembly-level
language and appreciate its 1:1 relationship to machine code.
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Input
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Figure 3.1 An elementary von Neumann computer.

The architecture of the great majority of general-purpose computers
and microprocessors is modelled after the von Neumann model shown in
Fig. 3.1.1 The few electronic computers in use up to the late 1940s either
only ever ran one program (like the war time code breaking Colossus)
or else needed partly rewired to change their behavior (for example the

1Von Neumann was a Hungarian mathematician working for the American Manhattan
nuclear weapons program during the 2nd World war. After the war he became a consultant
for the Moore School of Electrical Engineering at the University of Pennsylvania’s EDVAC
computer project, for which he was to employ his new concept where the program was
to be stored in memory along with its data. He published his ideas in 1946 and EDVAC
became operational in 1951. Ironically, a somewhat lower key project at Manchester Uni-
versity made use of this approach and the Mark 1 executed its first stored program in June
1948! This was closely followed by Cambridge University’s EDSAC which ran its program
in May 1949, almost two years ahead of EDVAC.
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ENIAC). The web site
http://www.nibec.ulst.ac.uk/sidk/essence/ch3_7.htm
gives historical and technical details of these prehistorical machines.

Von Neumann’s great leap forward was to recognise that the program
could be stored in memory along with any data. The advantage of this
approach is flexibility. To alter the program simply change the bit pat-
tern in the appropriate area of memory. In essence, the von Neumann
architecture comprises a Central Processing Unit (CPU), a memory and a
connecting highway carrying data back and forth. In practice the CPU
must also communicate with the environment outside the computer. For
this purpose data to and from suitable interface ports are also funnelled
through the data highway.

Looking at these elements in a little more detail.

The Central Processing Unit
The CPU consists of the ALU/Accumulator register together with the asso-
ciated control logic. Under the management of the control unit, program
instructions are fetched from memory, decoded and executed. Data re-
sulting from, or used by, the program is also accessed from memory. This
fetch and execute cycle constitutes the operating rhythm of the computer
and continues indefinitely, as long as the system is activated.

Memory
Memory holds the bit patterns which define the program. These se-
quences of instructions are known as the software. The word is a play on
the term hardware; as such patterns do not correspond to any physical re-
arrangement of the circuitry. Memory holding software should ideally be
as fast as the CPU, and normally uses semiconductor technologies, such
as that described in the last chapter.2 This memory also holds data being
processed by the program.

Program memories appear as an array of cells, each holding a bit pat-
tern. As each cell ultimately feeds the single data highway, a decoding
network is necessary to select only one cell at a time for interrogation.
The computer must target its intended cell for connection by driving this

2This wasn’t always so; the earliest practical large high-speed program memories used
miniature ferrite cores (donuts) that could be magnetized in any one of two directions.
Core memories were in use from the 1950s to the early 1970s, and program memory is
sometimes still referred to as core.
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decoder with the appropriate code or address. Thus if location 602Eh is

to be read, then the pattern
6

0110
0

0000
2

0010
E

1110b must be presented
to the decoder. For simplicity, this address highway is not shown here,
but see Fig. ?? on page ??.

This addressing technique is known as random access, as it takes the
same time to access a cell regardless of where it is situated in memory.
Most computers have large backup memories, usually magnetic or optical
disk-based or magnetic tape, in which case access does depend on the
cell’s physical position. Apart from this sequential access problem, such
media are normally too slow to act as the main memory and are used
for backup storage of large arrays of data (eg. student exam records) or
programs that must be loaded into main memory before execution.

The Interface Ports
To be of any use, a computer must be able to interact with its environment.
Although conventionally one thinks of a keyboard and screen, any of a
range of physical devices may be read and controlled. Thus the flow of
fuel injected into a cylinder together with engine speed may be used to
control the instant of of spark ignition in the combustion chamber of a
gas/petrol engine.

Data Highway
All the elements of our computer are wired together with the one common
data highway, or bus. With the CPU acting as the master controller, all
information flow is back and forward along these shared wires. Although
this is efficient, it does mean that only one thing can happen at any time,
and this phenomena is sometimes known as the von Neumann bottleneck.

The fetch instruction down — decode it — execute sequence, the so
called fetch and execute cycle, is fundamental to the understanding of
the operation of the von Neumann computer and microprocessor. To
illustrate this operating rhythm we look at a simple program that takes a
variable called NUM1 adds the constant 65h (101d) to it and assigns the
resultant value to the variable called NUM2. In the high-level language C
this may be written as:3

NUM2 = NUM1 + 101;

3If you are more familiar with PASCAL or Modula-2, then the program statement would
be expressed as NUM2 := NUM1 + 101
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A rather more detailed close-up of our computer, which I have named
BASIC (for Basic All-purpose Stored Instruction Computer) is shown in
Fig. 3.2. This shows the CPU and memory, together with the common
data highway (or bus) and an Address bus. Looking first at the individual
components of the CPU.

Data Buffer
The DATA_BUF holds the last one or two bytes fetched from the Data
bus. As shown here, this is the code for the first instruction ldaa (LoaD
Accumulator A) B6h.

Instruction Register
The last fetched instruction code (usually termed op-code, short for op-
eration code) is stored in the IR, feeding the Instruction decoder.

Instruction Decoder
The ID is the ‘brains’ of the CPU, deciphering the op-code and sending out
the appropriate sequence of signals necessary to locate the operand and
to configure the ALU to execute the operation.

Arithmetic Logic Unit
The ALU carries out an arithmetic or logic operation as commanded by its
function code generated by the Instruction Decoder.

Accumulator Register
A is the ALU’s working register. Most instructions use A to hold either the
source or the destination operand; for example suba #6 which subtracts
the constant 06 from the Accumulator register and then places the result
back in A.

Program Counter
Instructions are normally stored sequentially in memory, and the PC is the
counter which keeps track of the current instruction word. This register
is sometimes called (more sensibly) an Instruction Pointer. Loading the
PC with a new value disrupts the orderly count and causes the execution
sequence to jump or branch to another part of the program.

Address Buffer
When the CPU wishes to fetch an instruction word, it transfers the con-
tents of the PC into the ADD_BUFF register. This directly addresses the
memory via the Address bus. The resulting data is connected to the CPU
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via the Data bus and loaded into the DATA_BUF register. During this time
the R/W direction control line is 1 to indicate a read cycle. Where the
CPU wishes to access data from memory (as opposed to an instruction),
it places the appropriate address in ADD_BUFF. R/W is logic 1 where the
CPU wishes to read data and 0 where data is to be written (from DATA_BUF
to memory).

Data Bus
This bus is a set of eight (in this case) conductors acting as a bidirectional
information highway between the CPU’s Data register buffer and memory.
Binary patterns, representing either program or data, may be read from
memory (R/W = 1) or sent out and written to memory (R/W = 1) along this
one common link.

Address Bus
As the Data bus is potentially connected to all memory cells, some means
of enabling just one targeted cell at any one time is required. The Address
bus carries location information as a 16-bit binary pattern. Decoding cir-
cuits will switch the addressed cell onto the Data bus when the memory
circuit is enabled, see Figs 2.11 on page 29 and 2.21 on page 41.

Control Bus
The Control bus is the set of miscellaneous signals that indicate to the
outside world the status of the processor or allow external circuits control
over the processor operation. Our BASIC CPU has three Control signals:

• R/W is high when the CPU is reading data in from the Data bus and
low when data is being written out to memory.

• Clock times the CPU with one read or write cycle taking one Clock
period. Typically the Clock frequency ranges between 1 – 300 MHz.

• Reset is a signal from an outside agency (maybe the operator). In our
BASIC system, Reset sets the Program Counter to address 0000h, the
beginning of the program.

As shown in the diagram, I have depicted memory as an array of cells
(or pigeon holes), each with an unique address. This is shown divided
into two sectors; one holding the program code (sometimes called text)
and one the data code. Although these two sectors may physically be
part of the same memory circuits, typically different memory technologies
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are used for the two functions. Thus program code (also fixed tables of
constants and such like) may be located in ROM, whilst alterable data
(i.e. variable objects) are in RAM. I have, quite arbitrarily, originated the
program code at address 0000h and data at 6000h.

Each instruction code in memory is 8 bits (a byte) long. This is usually
followed by one or two bytes relating to where in memory the operand is
or sometimes the operand itself. The first instruction is stored as B6-
60-2Ch.4 As the Data bus is only 8 bits wide, two or three read actions
are required to fetch down each instruction. The first of these fetches is
shown in the diagram in which the op-code B6h (or 1011 0110b if you
prefer) has been brought down through DATA_BUF into IR. The memory
cell involved is shown shaded.

So much for the CPU and memory. Let us look at the program itself.
There are three instructions in our illustrative software, and as we have
already observed the task is to copy the value of a byte-sized variable
NUM1 plus 101d (65h) into a variable called NUM2, i.e.

NUM2 = NUM1 + 101;

We see from our diagram that the variable named NUM1 is simply a
symbolic representation for “the byte contents of 602Ch”, and similarly
NUM2 is a much prettier way of saying “the byte contents of 602Dh”.

Now as far as the computer is concerned, our program is, starting at
location 0000h:

101101100110000000101100
1000101101100101
101101110110000000101101

Unless you are a CPU this is not much fun!5

Using hexadecimal is a little better.

B6602C
8B65
B7602D

4Remember that we are only using hexadecimal notation as a human convenience. If
you took an electron microscope and looked inside these cells you would only ‘see’ 1011
0110 0110 0000 0010 1100.

5I know; I have programmed this way back in the primitive middle 1970s.
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but is still instantly forgettable. Furthermore, the CPU still only under-
stands binary, so you are likely to have to use a translator program run-
ning on, say a PC, to translate from hexadecimal to binary.

If you are going to use computer aid, it makes sense to go the whole
hog and express the program using symbolic representations of the var-
ious instructions (e.g. clra for CLeaR Accumulator, suba for SUBtract
from Accumulator) and for variables’ addresses. Doing this, our program
becomes:

ldaa NUM1 ; Copy the byte-sized variable NUM1 down to A
adda #101 ; Add to it the constant 101 decimal (65h)
staa NUM2 ; Copy NUM1+65h from A into NUM2

where text after a semicolon is comment.
Chapter 7 is completely devoted to the process of translation from this

assembly-level source code to machine readable binary. Here it is only
necessary to look at the general symbolic form of an instruction which is
one of these three:

instruction mnemonic
instruction mnemonic <address of operand>
instruction mnemonic <literal operand>

A few instructions have no explicit operand, such as rts (ReTurn from
Subroutine). Most instructions, including our three here, have an operand
field. This either is the address of a memory-located datum, such as
clr 6000h (Clear the contents of memory location 6000h) or the literal
data constant itself, such as suba #6 (SUBtract the constant six from the
Accumulator). Thus we cannot just say adda, we need to say “add some-
thing to the Accumulator”, for example adda 06000hmeans “add the byte
contents of 6000h to the contents of the Accumulator register and place
the outcome back in the Accumulator register”. This could be written
as: (a) <- (6000) + (a), where the brackets mean contents of and <-
means becomes. This notation is called register transfer language (rtl).
In writing programs using assembly-level symbolic representation, it is
important to remember that each instruction has a one to one correspon-
dence to the underlying machine instructions and its binary code.

All our examples instructions use the Accumulator register A directly
as the source or destination of the datum. The first and last specify an
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absolute address, which is the actual location in memory of the datum.
It is easier for us humans to give these variables symbolic names, such
as NUM1, but actually they are addresses. The middle instruction adds
a constant number rather than a variable in memory. This constant is
indicated thus as #65h, where the hash (pound in North America) symbol
signifies a constant (or literal) in assembly language. The constant byte
itself really is stored in memory, as the second byte of the instruction. If
you leave the # out6 then the instruction adda 65h will be translated as
“add the byte-sized contents of 0065h to A”, rather than “add the constant
65h to A”. In rtl (a)<-(0065h)+(a) instead of (a)<-0065h+(a).

The essence of computer operation is the rhythm of the fetch and ex-
ecute cycle. Here, each instruction is successively brought down from
memory (fetched), interpreted and then executed. In order to illustrate
this let us trace through our example program. We assume that our com-
puter, that is the Program Counter, is reset to 0000h.

Fetch cycle 1(a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fig. 3.3

• Program Counter (0000h) to ADD_BUFF and on to Address bus.
• First op-code (Load byte to A) in memory then appears on the Data bus,

through to DATA_BUF and IR.
• Program Counter incremented.

Fetch cycle 1(b)

• Program Counter (0001h) to ADD_BUFF and on to Address bus.
• The upper byte of the 2-byte address of the variable NUM1 (60h) in

memory then appears on the Data bus, through to DATA_BUF.
• Program Counter incremented.

Fetch cycle 1(c)

• Program Counter (0002h) to ADD_BUFF and on to Address bus.
• The lower byte of the 2-byte address of the variable NUM1 (2Ch) in

memory then appears on the Data bus, through to DATA_BUF.
• Program Counter incremented.

Execute 1

6As you surely will do on occasion!
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(a)  Fetch 1, three  cycles

(b)  Execute 1
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Figure 3.3 Fetch and execute the first instruction, ldaa NUM1.
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(a)  Fetch 2, two  cycles

(b)  Execute 2
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(a)  Fetch 3, three  cycles

(b)  Execute 3
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• The operand address 602Ch to ADD_BUFF and on to Address bus.
• Resulting data (NUM1) is read onto the Data bus (R/W = 0). through to

DATA_BUF.
• The ALU is configured to Pass Through mode, which feeds NUM1 through

to the Accumulator register A.

Fetch cycle 2(a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fig. 3.4

• Program Counter (0003h) to ADD_BUFF and on to Address bus.
• Second op-code (Add constant byte to A) in memory then appears on

the Data bus, through to DATA_BUF and IR.
• Program Counter incremented.

Fetch cycle 2(b)

• Program Counter (0004h) to ADD_BUFF and on to Address bus.
• The constant operand (65h) in memory then appears on the Data bus

and through to DATA_BUF.
• Program Counter incremented.

Execute 2

• The ALU is configured to Add mode, the outcome of which (NUM1+65h)
is placed in A.

Fetch cycle 3(a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fig. 3.5

• Program Counter (0005h) to ADD_BUFF and on to Address bus.
• Third op-code (Store byte from A to memory) in memory then appears

on the Data bus, through to DATA_BUF and IR.
• Program Counter incremented.

Fetch cycle 3(b)

• Program Counter (0006h) to ADD_BUFF and on to Address bus.
• The upper byte of the address of the variable NUM2 (60h) in memory

then appears on the Data bus, through to DATA_BUF.
• Program Counter incremented.

Fetch cycle 3(c)
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• Program Counter (0007h) to ADD_BUFF and on to Address bus.
• The lower byte of the address of the variable NUM2 (2Dh) in memory

then appears on the Data bus, through to DATA_BUF.
• Program Counter incremented.

Execute 3

• The operand address 602Dh to ADD_BUFF and on to Address bus.
• The ALU is configured to Pass Through mode, which feeds the contents

of A through to DATA_BUF and to the Data bus. The data is stored in
memory by bringing R/W to logic 0 for a write action.

Notice how the Program Counter is automatically advanced during each
fetch cycle. This sequential advance will continue indefinitely until an in-
struction to modify the PC occurs, such as jmp 0200h. This would place
the address 0200h into the PC, overwriting the normal incrementing pro-
cess, and effectively causing the CPU to jump to whatever instruction was
located at 0200h. Thereafter, the linear progression would continue.

Although our program doesn’t do very much, it only takes a few mi-
croseconds to execute each instruction. Several hundred thousand unim-
pressive operations each second can amount to a great deal! Nevertheless,
it hardly rates highly in the annals of software, so we will wrap up our in-
troduction to computing by looking at some slightly more sophisticated
examples.

Writing a program is somewhat akin to building a house. Given a
known range of building materials, the builder simply puts these together
in the right order. Of course there are tremendous skills in all this; poor
building techniques lead to houses that leak, are drafty and eventually
may fall down!

It is possible to design a house at the same time as it is being built.
Whilst this may be quite feasible for a log cabin, it is likely that the fi-
nal result will not remain rain proof very long, nor will it be economical,
maintainable, ergonomic or very pretty. It is rather better to employ an
architect to design the edifice before building commences. Such a design
is at an abstract level, although it is better if the designer is aware of the
technical and economic properties of the available building materials.
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Unfortunately much programming is of the ‘on the hoof’ variety, with
little thought of any higher-level design. In the software arena this means
devising strategies and designing data structures in memory. Again, it is
better if the design algorithms keep in mind the materials of which the
program will be built; in our case the machine instructions.

At the level of our examples in this chapter, it will be this coding (build-
ing) task we will be mostly concerned with. Later chapters will cover more
advanced structures which will help this process, and we will get more
practice at devising strategies and data structures.

Code Condition Register

15 0

7

15

0

0

Accumulator
A

IX
Index register

Program Counter
PC

N Z C

Figure 3.6 Programmer’s model.

In order to code software we must have a knowledge of the register
architecture of the computer/microprocessor and of the individual in-
structions. Figure 3.6 shows the programming model we will use for our
exercises. This shows all registers that can be ‘got at’ by the program. I
have added two registers to the previous complement. An Index register
(IX) complements the Data register and is primarily meant to point to an
object in memory. The Code Condition Register (CCR) comprises three
flip flops or flags which are used to tell the software something about the
outcome from an instruction. Thus the C flag is primarily the Carry bit
from the last addition (or borrow from a subtraction). The Z flag is set if
the operation result is zero, and the N flag is set if the operation result
has its most significant bit set to 1 (which is the sign bit if the object is to
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be treated by the programmer as a signed 2’s complement number).
Table 3.1 shows all the instructions supported by the BASIC computer.

Before looking at these, let us discuss the concept of the address mode.
Most instructions act on data, which may be in internal CPU registers or
out in memory. Thus the location of such operands must be part of the
instruction. It isn’t sufficient to simply state clr — Clear what? There
are different ways of specifying the operand location; for instance clra
and clr 6000h are legitimate manifestations of the same clr instruction.
In the first case the target is the Accumulator and in the second, out in
memory at the fixed address 6000h. The different ways of pointing out
an operand’s location are the address modes. Which address mode an
instruction is to use is specified by some of the bits in its operation code.
They are:

Inherent
Some instructions have no operand data. Such instructions either target
an internal register or do not explicitly alter any register. Examples of the
former are clra (CLeaR Accumulator). All Inherent instructions have only
a one-byte op-code, with any register information being encoded within
these 8 bits. Thus clra is coded as 4Fh or 01001111b.

Immediate
This is used when the operand is fixed data; for example:
adda  #120    ; Add the constant 120 decimal to A

Note the use of the # symbol to denote that the following number is con-
stant data. If we leave this out, e.g. adda 120, then this is interpreted
as “add the contents of address 0120d to A”. The destination of such in-
structions will be an internal register. Where this register is 8 bits wide
(i.e. the Accumulator) then the immediate data is a single byte following
the op-code in memory. For example, the instruction adda #78h is coded
as 8B-78h. For 16-bit registers (i.e. the Index register) the literal data is lo-
cated as two bytes following the op-code, e.g. ldx #1234h is represented
in program memory as CE-12-34h.

Absolute
Here the absolute address of the operand follows the op-code. For exam-
ple:
clr.b  6050h  ; Clear the byte at memory address 6050h
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Instruction Description Address modes for [ea] Flags

# Inher Absol Index N Z C

Arithmetic

adda [ea] Add to A * * *
√ √ √

adca [ea] Add to A with Carry * * *
√ √ √

clr [ea] Clear memory * * 0 1 0
clra Clear A * 0 1 0
dec [ea] Decrement memory * *

√ √ •
deca Decrement A *

√ √ •
dex Decrement IX * • √ •
inc [ea] Increment memory * *

√ √ •
inca Increment A *

√ √ •
inx Increment IX * • √ •
suba [ea] Subtract from A * * *

√ √ √
sbca [ea] Subtract from A with Carry/borrow * * *

√ √ √

Movement

ldaa [ea] Load (copy) to A from memory * * *
√ √ •

ldx [ea] Load (copy) to IX from memory * * *
√ √ •

staa [ea] Store (copy) from A to memory * *
√ √ •

stx [ea] Store (copy) from IX to memory * *
√ √ •

Logic

anda [ea] Bitwise AND A with memory * * *
√ √ •

com [ea] Complement (NOT) memory * * • • 1
coma Complement (NOT) A * • • 1
oraa [ea] Bitwise OR A with memory * * *

√ √ •
lsl [ea]1 Logic Shift Left memory one place * * 0

√
b7

lsla1 Logic Shift Left A one place * 0
√

b7
lsr [ea] Logic Shift Right memory one place * * 0

√
b0

lsra Logic Shift Right A one place * 0
√

b0

Testing

cmpa [ea] Compare A with memory * * *
√ √ √

cpx [ea] Compare IX with memory * * *
√ √ •

Branch

bra BRAnch always • • •
beq Branch if EQual to zero • • •
bne Branch if Not Equal to zero • • •
bcc/bhs Branch if Carry Clear/Higher or Same • • •
bcs/blo Branch if Carry Set/LOwer than • • •
bpl Branch if PLus (bit 7 = 0) • • •
bmi Branch if MInus (bit 7 = 1) • • •
jmp JUmP (goto) directly * * • • •

* : Available
√

: Flag operates normally
1 : Flag set • : Not affected
[ea] : Effective address 0 : Flag cleared
1 : Alternatively asl

Table 3.1 Our BASIC computer’s instruction set.
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THis is coded as 7F-60-50h. The characteristic of this address mode is
that the location of the operand is fixed as an integral part of the program,
and this cannot be changed as execution progresses.7 This address mode
is sometimes called direct.

Program 3.1 Clearing memory the linear way.

CLEAR_ARR: clr 6000h ; Clear Array[0]
clr 6001h ; and Array[1]
clr 6002h ; Each clr occupies four bytes
clr 6003h ; of program memory
clr 6004h ; Keep on going
..... .....
..... .....
clr 61FEh ; Clear Array[510]; nearly there
clr 61FFh ; Clear Array[511]; Phew!

Although directly specifying its address may seem to be the obvious
way to locate an object in memory, this technique is rather inflexible. Sup-
pose we wished to clear an area of memory between 6000h – 61FFh, say to
hold an array of 512 byte elements Array[0]…Array[511]. The obvious
way to do this is shown in Program 3.1, which uses a clr instruction for
each byte. This program needs 512 3-byte instructions, totalling 1.5 Kbyte
of program memory for storage! Although it works, this is highly ineffi-
cient, and the mind boggles if you wanted to clear a 4 Kbyte memory space!
There has got to be a better way.

Indexed
The Index register is not generally used to hold data but instead holds a
16-bit address. This address is used to locate or point to a datum byte in
memory. For example:

clr  ,x       ; Clear the byte pointed to by IX

The effective address (ea) is the contents of the Index register. Thus,
if the Index register happened to hold the address 6010h at the time the

7If the code is stored in RAM, in theory the program can change itself, but self modifying
code is a somewhat hair raising practice!
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example instruction above was executed then the net result would be to
copy the byte at 6010h into the Accumulator. Another term for this type
of addressing is indirect, as the register does not hold the data itself, only
a location pointer.

This seems rather an obscure way of doing things, but let us revisit
our array clearing example. Repeating the same thing 512 times on suc-
cessive memory locations is a doubtful way of doing this. Why not use a
pointer into the array, and increment the pointer each time we do a Clear?
This is just what we have done in Program 3.2. The linear structure of the
previous program has been folded into a loop, shown shaded. The execu-
tion path keeps circulating around the clr instruction which is ‘walked’
through the array by advancing the pointer on each pass through loop.
Eventually the pointer moves out of the desired range and the program
then exits the loop.

Program 3.2 has many new features, especially as we haven’t yet re-
viewed the instruction set.

1. Line 1 initializes the Index register by moving the constant 6000h
(the location of Array[0]) into it. Note the use of ldx instruction.
Nearly all loop structures involve some setting up before entry.

2. The actual Clear instruction uses the Indexed address mode. This
line has a label associated with it; it is called CLOOP. The assembler
knows this is a label and not an instruction by the appended colon.

3. Each pass around the loop involves an incrementation of the pointer.
This is done here by simply adding one onto the Index register with
the INcrement IX instruction.

4. Nearly all loops need a mechanism to eventually exit, otherwise it
will become an endless loop. In our case this is done by comparing

Program 3.2 Clearing memory using a repeating loop.

NEXT:      .....  .....  ; ELSE next instruction
           bne    C_LOOP ; IF not over the top THEN again
           cpx   #6200h  ; Has pointer reached 6200h?
           inx           ; Advance pointer 1
CLOOP:     clr   ,x      ; Clear target byte pointed to by IX
CLEAR_ARR: ldx   #6000h  ; Set up pointer to start of array
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the contents of the Index register with the constant 6200h. If they
are not equal then the code execution path transfers back up to the
beginning of the loop. This transfer uses the Branch if Not Equal (bne)
instruction. Note the use of the label CLOOP in this instruction; this is
why we labelled this entry point earlier. If the comparison test fails
(when IX = 6200h) then the branch back is ignored and execution
passes to the next instruction after the loop.

Relative
The Branch instructions implicitly alter the state of the Program Counter.
By adding the byte following the op-code the outcome is to cause the
computer’s execution order to skip to another part of the program. This
is known as the Relative address mode which computes the effective
address as the Program Counter plus offset. For example bra .+06 (I am
using the . to symbolize the current value of the PC), which is coded as 20-
06h, skips forward six places from where the PC is at following the fetch
of the instruction. This is simply implemented by the computer adding 6
onto the PC at execution time. We will discuss Branch instructions shortly
(see page 66), but examination of Table 3.1 shows that all but one of these
instructions are conditional on the outcome of some test or action. Thus
we can code actions such as:

IF object is zero
THEN DO this;
ELSE DO that;

Having covered the address modes, let us look briefly at the instruc-
tion set in Table 3.1. Instructions have been divided into five groups as
follows.

Arithmetic
The fundamental operations of addition and subtraction are supported.
Datum may be added to (adda) or subtracted from (suba) the Accumula-
tor. Thus suba 6020h subtracts the byte out at memory location 6020h
from the content of the Accumulator.

The variant adca also adds in the state of the Carry flag , 0 or 1 to the
sum. In a similar manner sbca subtracts the state of C from the difference,
in effect treating the Carry flag as a borrow from a previous subtraction.
Both variations expedite multiple-precision arithmetic implemented as a
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series of byte operations where a carry or borrow is propagated from
least- to most-significant columns; see example ??.

Clearing is equivalent to copying the constant zero into the destina-
tion effective address and thus is convenient but not fundamental. clra
directly zeros the Accumulator, and is similar to ldaa #0. A read/write
memory location can be directly zeroed by using the clr instruction, e.g.
clr 6020h. This is comparable to ldaa #0 -- staa 6020h, which how-
ever has the side effect of destroying (overwriting) the previous content
of the Accumulator.

Incrementation is also not fundamental, but is equivalent to adding one
to the target location. Thus inca augments the Accumulator and inx the
16-bit Index register. Like clr, inc can operate directly on the contents
of read/write RAM. For example inc 6020h increments the byte datum
in 6020h. This does not affect the state of the Accumulator. None of the
Incrementation instructions affect the Carry flag and thus cannot be used
for multiple-precision incrementation.

Decrementation mirrors the Incrementation instructions. Thus deca
subtracts one from the 8-bit Accumulator; dex subtracts one from the 16-
bit Index register and dec subtracts one from the 8-bit datum in memory
location 6020h. None of these instructions affect the Carry/Borrow flag.

Movement
These instructions copy data from source to destination. The majority of
operations involve moving data, so this category is the most used of the in-
structions. Data can be copied directly from the Accumulator (stored) into
one memory byte location using the staa instruction. Similarly the state
of the Index register can be copied into read/write memory using the stx
instruction However, as this datum is two bytes wide, this occupies two
consecutive memory locations. For example the instruction stx 6020h
stores the contents of IX as a pair of bytes IXH:IXL thus IXH IXL

6020h 6021h

, where the
H suffix refers to the high byte and L for the low byte. See also Fig. 6.3(a)
on page 137.

Copying data from memory into the CPU is referred as loading. Thus
ldaa copies the datum from the effective address into the Accumulator.
For example, ldaa 6020h. In a similar manner ldx moves the 16 bits
from the ea:ea+1 into the Index register. For example ldx 6020h results
in 6020h 6021h

IX

. See also Fig. 6.3(b) on page 137.
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Logic
The com instruction COMplements (inverts) all bits in the target memory
location, e.g. com 6020h. Likewise, coma toggles all bits in the Accumula-
tor.

The anda instruction bitwise ANDs the contents of the Accumulator.
For example, if the contents of A were 1001 0111b, then anda #0Fh will
give 0000 0111b in A (see page 13. The Accumulator can be ANDed with
the contents of a memory location, e.g. anda 6020h, which ends up with
the contents of A ANDed with (6020h) overwriting the original contents
of A.

In a similar manner oraa bitwise ORs the contents of the Accumulator
with either a constant or the contents of a memory location and places
the outcome back in the Accumulator. Thus oraa #10000000b sets bit 7
of A to 1 and leaves all other bits unaffected (see page 1.3.

0 1 1 1 0 0 0 0 1 0 0 0 0 1 0 1

A C

lsra

00 1 1 1 0 0 010 0 0 0 1 0

CA

0 10

Figure 3.7 Shifting data one place to the right.

Two instructions are provided that can shift the contents of the Accu-
mulator or the contents of any read/write RAM location one place either
left or right, eg. lsla or lsl 6020h. As shown in Fig. 3.7, the last bit
shifted out ends up in the Carry flag. The leftwise version lsl is often
symbolized by the mnemonic asl (Arithmetic Shift Left), see page 121.

Testing
Mathematically the way to compare the magnitude of two numbers is to
subtract them, NUM_1− NUM_2. If they are equal then the outcome will be
zero, that is the Z flag will be set. If NUM_1 is higher than NUM_2 then there
will be no borrow generated, C is clear. If NUM_1 is lower than NUM_2 then
a borrow will be generated and the C flag will be set. If NUM_1 is in the
Accumulator then Table 3.2 summarizes the situation.
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A higher than NUM: A − NUM→ no Carry and non-Zero C=0, Z=0 (C+Z=1)
A equal to NUM: A − NUM→ gives Zero Z=1
A lower than NUM: A − NUM→ gives a Carry C=1

Table 3.2 Comparing two unsigned numbers.

If we are only interested in the relative magnitude of two quantities,
eg. “is the temperature lower than 10” and not by how much they differ,
then using the suba instruction is overkill, in that the operand in A will
be destroyed (replaced by the difference). The cmpa instruction uses the
ALU to perform the subtraction and sets the appropriate flags but then
throws away the answer (that is does not put it in A). Compare can be
thought of as a non-destructive subtract.

Branch
Branch instructions make the Program Counter skip xx places forward or
backwards; usually based on the state of the CCR flags. Thus the instruc-
tion bcc .+8 (coded as 24-08h) means “Add eight to the current state of
the PC if the C flag is clear”. Notice the terminology .+8 to mean from
the current place. Remember, from Figs. 3.3(b), 3.4(b) & 3.5(b), that by
the time an instruction is executed the PC is already pointing to the next
instruction. Thus this instruction actually lands the execution point 10
(8+2) bytes further along from the Branch instruction. Backwards skips,
eg. bcs .-16 (coded as 25-F0h) use a 2’s complement offset following
the op-code. With a byte-sized offset following the op-code, a range of
+129to− 126 (7Fh – 80h) bytes is possible remembering that 2 is added
to the PC when the Branch instruction is fetched.

Rather than calculating these offsets by hand, use labels and allow the
assembler to do the sums. Thus in Program 3.2 we have bne CLOOP in-
stead of bne .0FAh. Eight Branches are listed. Branch Always (bra) is un-
conditional, that is the offset byte is always added to the PC. The bcc:bcs
pair have the alternative mnemonic bhs:blo for Branch if Higher or Same
and Branch if LOwer than, which is more meaningful after a Comparison
operation. Branch if EQual to zero/Not Equal to zero similarly check the
Z flag. Although Conditional Branches frequently come after a Compare
operation (as in Program 3.2), they can follow any operation that affects
the appropriate flags, such as a ldaa or staa instruction.

All Branch instructions use the Relative address mode discussed on
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pages 63 and 100. The jmp instruction is similar to the unconditional bra
but is absolute in that the jump is to a specified address and not n places
from the current position. As jmp can be used to transfer execution to
any point in the program it can be used in conjunction with any of the
Condition Branch instructions to extend their range. For example:

bne NEXT ; Continue on if Z = 0
jmp FRED ; ELSE go to FRED

NEXT: ... ....

will transfer control to the far off point FRED if the Z flag is set to 1.
Thus it is equivalent to a hypothetical lbeq Long Branch if EQual to zero
instruction.8

Examples

Example 3.1
Write a program that will add the byte contents of memory locations
0000h (called NUM1) to that of 0001h (called NUM2). The answer is to
be in 0010h (SUM_H) and 0011h (SUM_L) in the order high:low byte.

Solution
This is similar to our load-add-store program on page 50 but the
second operand is a byte variable in memory rather than a constant.
The three instructions to implement this are now:

Program 3.3 Simple single-precision addition of two byte variables.

SP_ADD: ldaa NUM1 ; Get the first memory byte
adda NUM2 ; Add to it the second byte
staa SUM_L ; Put the outcome in memory as the lower sum byte.

Of course this will only work if the outcome of the addition can fit
into a single byte; that is no more than FFh (255d). If, for example,

8The 6809 MPU has a set of Long Branches that mirror the normal short Branches.
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both NUM1 and NUM2 were FFh, then the outcome would be 1 FFh.
As we have reserved two bytes for the sum then all we have to do
is set the most-significant byte SUM_H to 1 if there is a carry out
from the addition of the two variable bytes (the maximum value of
SUM_H is one) otherwise zero the upper byte of the sum. One possible
implementation is shown in Program 3.4. Here we simply zero the

Program 3.4 A more accurate single-precision addition of two byte variables.

SP_ADD: clr SUM_H ; Prepare the upper sum byte by zeroing it

ldaa NUM1 ; Get the first memory byte
adda NUM2 ; Add to it the second byte
staa SUM_L ; Put the outcome in memory as the lower sum byte.

bcc EXIT ; IF zero carry THEN finished
inc SUM_H ; ELSE increment higher sum byte

EXIT: ... ..... ; Next part of the program

upper byte of the sum in advance, and after the addition skip around
the Increment instruction of line 6 if the Carry flag is Clear (Branch if
Carry Clear, line 5).

The more general solution, shown in Program 3.5, actually adds
the Carry flag state directly on to a zero constant number and then
moves the outcome to the most significant byte of the sum.

Program 3.5 An alternative single-precision addition of two byte variables.

SP_ADD: ldaa NUM1 ; Get the first memory byte
adda NUM2 ; Add to it the second byte
staa SUM_L ; Put the outcome in memory as the lower sum byte.

ldaa #0 ; Clear the Accumulator, but not the C flag
adca #0 ; Add to it the carry information
staa SUM_H ; and the outcome will be the state of the Carry flag
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Notice that the instruction ldaa #0 has been used to clear the
Accumulator instead of the more obvious clra.

Example 3.2
Write a program routine that will add two 16-bit numbers giving
a 17-bit sum. The augend is located in the two memory locations

0000:1h in the order high:low byte thus AUGEND_H AUGEND_L

0000h 0001h

. The addend is

similarly situated ADDEND_H ADDEND_L

0002h 0003h

. The sum is stored as three bytes in the

order high:middle:low thus SUM_H SUM_M

0004h 0005h

SUM_L

0006h

.

Solution
Although BASIC is only capable of directly implementing 8-bit
arithmetic, operations of any length are possible by breaking down
the process into byte-sized stages. In the case of addition, this
involves a sequence of byte operations from the least to the most
significant digits with any carry from the nth digit byte being added
into the n + 1th summation. The least significant addition has a
presumed carry-in of 0 and the carry-out from the most significant
addition becomes the highest bit of the outcome. For example
FF FFh+ FF FFh = 1 FF FFh (65,535d+ 65,635d = 131,070d).

The overall process is diagrammatically shown in Fig. 3.8. However,
given that we need to implement the process as a sequence of steps

AUGEND_H AUGEND_L

0000h 0001h

ADDEND_H ADDEND_L

0002h 0003h

SUM_H SUM_M

0004h 0005h

SUM_L

0006h

Figure 3.8 The process.
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executable by the byte-sized instruction of Table 3.1 then the next
step is to produce a task listing.

1.Add the low bytes of the augend and addend, generating the low byte
of the sum and carry C1.

2.Add the high bytes of the augend and addend plus the last carry-out
C1 to give the middle byte of the sum and a new carry-out C2.

3.The high byte of the sum is the last carry-out C2, either 0 or 1.

AUGEND_H AUGEND_L

0000h 0001h

ADDEND_H ADDEND_L

0002h 0003h

SUM_H SUM_M

0004h 0005h

SUM_L

0006h

C1 C2

C1

C2

(a)  Adding the least-significant bytes (b)  And the most-significant bytes

(c)  The most-significant sum byte is the last carry-out

0000h 0001h

AUGEND_H AUGEND_L

0002h 0003h

ADDEND_H ADDEND_L

0000h 0001h

AUGEND_H AUGEND_L

0002h 0003h

ADDEND_H ADDEND_L

SUM_H SUM_M SUM_L

0004h 0005h 0006h

0004h 0005h 0006h

SUM_H SUM_M SUM_L

Figure 3.9 Visualisation of the task process.

Given that this is our first program of any substance, a detailed
visualization of this task list will be useful. For most instances detail
at this level is not helpful and subsequently we will use a more
abstract visualization known as a flow chart (see Example 3.3).

Once a task list has been established then the next step is to
implement this as a sequence of instructions, that is the program.
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One possible is shown in Program 3.6.

Program 3.6 The double-precision add program.

; Task 1
D_P_ADD: ldaa AUGEND_L ; Get the lower byte of the augend

adda ADDEND_L ; Add to the lower byte of the addend
staa SUM_L ; Giving the lower byte of the sum

; Task 2
ldaa AUGEND_H ; Get the augend’s higher byte
adca ADDEND_H ; Add to the addend’s like byte + carry from 1
staa SUM_M ; Giving the sum’s middle byte

; Task 3
ldaa #0 ; Clear Accumulator but not Carry flag
adca #0 ; Add zero plus the Carry to the Accumulator
staa SUM_H ; This gives the sum’s highest byte (0 or 1)

In the listing the three tasks are identified by an appropriate
comment; each task being implemented by 3 instructions.

Task 1
This comprises a Load-Add-Store sequence, as illustrated in Figs. 3.3
— 3.5, to add the lower byte of the addend to that of the similar
significant augend. The outcome byte is stored in memory at 0004h
(SUM_L) and the Carry flag bit is set as appropriate to C1.

Task 2
This is very similar except that the second byte of all three variables
are targeted and the adca (ADd with Carry to Accumulator) replaces
the plain adda of Task 1. This adds in the Carry bit C1 as well as
the two data bytes. The outcome byte is stored in memory at 0005h
(SUM_M) and the C flag now holds C2.

Task 3
This is slightly more complex. The objective is to make memory lo-
cation 0006h 00h if the C flag is 0 and 01h if C is 1.

One way of doing this is to zero the Accumulator and add zero
to it plus the carry C2. The outcome (00h or 01h) is then stored as
the most significant byte of the sum SUM_H. The only problem here
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is zeroing the Accumulator. The obvious way instruction to use here
is clra, but we see from Table 3.1 that this also clears the C flag!
The ldaa instruction does not, and thus we use ldaa #00 to zero the
Accumulator and not loose C2. adca #0 then adds zero plus carry,
which is equivalent to the instruction Add Carry Only.

Example 3.3
Write a routine that will multiply the contents of the Accumulator by
ten. The outcome product is to be located in 0000:1h in the form

PROD_H PROD_L

0000h 0001h

. Locations 0002h and 0003h can be used for temporary storage
of two bytes.

Solution

Conceptually the simplest way of implementing this function is by
repetitive addition, that is to add the byte variable in the Accumu-
lator ten times. Of course, multiplication of an 8-bit quantity will
give a product needing a larger number of bits for storage. Two
memory bytes will hold the maximum possible size of outcome
255 × 10 = 2550 (FFh × 0Ah = 9F6h). The double-precision addi-
tion (see Example 3.2) has to be repeated ten times and this is best
implemented as a loop (see page 62). Memory location 0002h can be
used as a loop counter, decremented on each pass, with exit when
COUNT reaches zero. 0003h can act as a temporary home for the
multiplicand in the Accumulator.

The flow chart of Fig. 3.10 shows the task list to implement this

algorithm. This diagrammatical representation uses a box to

indicate a process, a diamond to denote a decision and oval

to depict a termination or entry point.

The implementation of Program 3.7 follows the flow chart closely.
Names for the four memory locations are shown as part of the
program using the directive .define. More details on directives are
given in Chapter 7. For now consider this as an aide mémoire for
the programmer. The double-precision addition of a byte to a 2-byte
variable is similar to Example 3.2. This is executed ten times, with
the contents of COUNT decrementing from an initialised value of ten
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Clear
2-byte product

count  =  10

N to product
2-byte add

Decrement
count

count > 0?

end

pline

yes

no

1

2

3

4

5

6

Figure 3.10 Flow chart showing multiplication by ten
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Program 3.7 Multiplication by ten.

.define PROD_H = 0000h,PROD_L=0001h,COUNT=0002h,TEMP=0003h
MUL_10: clr PROD_L ;1: Clear 2-byte product

clr PROD_H
staa TEMP ; Save the multiplicand in memory
ldaa #10 ;2: Make the fixed multiplier ten
staa COUNT ; Which becomes the loop count in memory

LOOP: ldaa TEMP ;3: Get the multiplicand
adda PROD_L ;3: Add it to the lower byte of the product
staa PROD_L ;3: and restore in memory
ldaa PROD_H ;3: Add carry to upper byte of product
adca #0
staa PROD_H

dec COUNT ;4: Decrement loop count
bne LOOP ;5: IF not yet zero THEN do again

... ..... ;6: Next piece of program code

down to zero. On zero the Branch if Not Equal to zero fails and the
program drops out of the loop.

This same technique could be used for any fixed multiplier between
zero and 255. Could you modify the routine so that the multiplier
can be a variable this range in memory on entry to the routine.

Example 3.4
The ASCII code for the character ’0’ (zero) is 30h. Write a program
that fills an area of memory from 0000h through 01FFh with ’0’s.

Solution

This is similar to Program 3.2 but with the constant #30h being
placed in the Accumulator before entering the loop (see line 2 of
Program 3.8) and clr ,x being replaced by staa ,x. In Program 3.8
these two new instructions are shown shaded.
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Array[511]

01FF h

Array[0]

0000h

Array[1]

0001h

Array[2]

0002h

Array[3]

0003h

Array[4]

0004h 01FEh

IX IX IX IX IXinx inx inx inx inx

Memory

Loop 1 Loop 2 Loop 3 Loop 4 Loop 5 Loop 512

Figure 3.11 Filling an array of memory locations with constant data.

On each pass through the loop, the contents of the Accumulator
(that is #30h) will be stored in memory at the effective address. As the
Indexed address mode has been used, this effective address is simply
the contents of the Index register. As this address or pointer register
is initialized before entry into the loop (see line 1 of Program 3.8)
and is incremented on each pass through the loop, the net effect is
to progressively fill memory with the constant #30h. As before, the
loop is exited when this pointer reaches 0200h, by comparing it with
the constant #0200h (line 5) and only branching back if under this
value. The process is illustrated in Fig. 3.11, where the Index register
is used as a pointer ‘walking through’ the array from 0000h up to
01FFh.

Program 3.8 Source code for the array fill program.

NEXT:      .....  .....  ; ELSE next instruction
           bne    C_LOOP ; IF not over the top THEN again
           cpx   #0200h  ; Has pointer reached 0200h?
           inx           ; Advance pointer 1
CLOOP:     staa  ,x      ; Put data in memory @ location pointed to by IX
           ldaa  #30h    ; Put the constant data in the Accumulator
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CLEAR_ARR: ldx   #0000h  ; Set up pointer to start of array

Example 3.5
Data from an array of memory between 0000h and 0FFFh is to be
transmitted byte by byte to a distant computer over the internet.
In order to allow the receiver to examine the data and check for
transmission errors it is proposed to append a single byte which is
the 2’s complement (i.e. the negative value, see page 9) of the 8-bit
sum of all the data bytes together. If all the received data bytes plus
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this checksum byte are similarly added then the outcome should be
zero if no error has occurred.

Solution

This is very similar to Example 3.4 but here as we walk through the
loop we add the bytes, ignoring any overflowing carries. When the
grand total has been reached, it is inverted and one added (that is 2’s
complemented).

Program 3.9 Generating a checksum.

CHECKSUM: ldx #0000h ; Point to the bottom of the array
clra ; Clear the sum

LOOP: adda ,x ; Add ARRAY[n] to the sum
inx ; Increment n
cpx #7000h ; Check. Over the top yet?
bne LOOP ; IF not THEN do next add

coma ; ELSE invert grand total
inca ; and add one to give the checksum in A

... .....

Example 3.6
One simple way of encrypting a data byte is to reverse the order
of bits. For example 10111100b -→ 00111101b. Write a routine
to implement this reversal on a data byte in 0000h. The encrypted
outcome is to be in the Accumulator. You can use location 0001h as
a loop counter.

Solution

Program 3.10 simply shifts left the data once and the encrypted data
once right. When a left shift sets the Carry flag because the shifted
out bit (see Fig. 3.7) is a 1 then the leftmost of the shifted-right
encrypted byte is set to one using the oraa instruction (see 65).
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In this way after eight passes, the encrypted data is the original
reversed.

Program 3.10 Reverse encryption.

.define DATA = 0000h, COUNT = 0001h
REVERSE_ENCRYPT:

ldaa #8 ; Set the loop counter to 8
staa COUNT

LOOP: lsl DATA ; Shift the data left once
bcs SHIFT1 ; IF a 1 pops out into the C flag

; skip over the next two instructions
asra ; Shift encrypted data once right
bra NEXT ; with a 0 shifted in

SHIFT1: asra ; Shift encrypted data once right
oraa #100000000b ; with a 1 shifted in

NEXT: dec COUNT ; Record one more pass
bne LOOP ; and repeat until counter is zero
... .....

Self-assessment questions

3.1

3.2 Write a routine to act as a receive checksum for Example 3.5. The
data comes in from a location 8000h a byte at a time, and there
are 4097 bytes, including the checksum byte. You can assume that
everytime location 8000h is read a new value is available. If an error
has occurred then the program is to jump to a label ERROR some
distance away, otherwise it is to continue on to the next instruction.

3.3 Write a program that will convert a byte located in memory location
0000h called BINARY of value 00h– 63h (0 – 99d) to a 2-digit BCD
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equivalent in locations 0010h for the ten’s digit (called TENS) and
0011h for the units digit (called UNITS). For example if BINARY is
4Fh (01001111b) then the outcome will be 07 tens and 09 units;
that is 4Fh = 79d.

Hint: The easiest way to do this is to keep a tally of how many
times ten can be subtracted from the binary number without the
residue being less than ten. Whatever is left, the residue, will be the
value of the units.



CHAPTER 4

The 6802 microprocessor

In this chapter we introduce the 6802 MPU, which we will use as our illus-
trative device for the rest of the text. Here we will primarily look at the
internal structure, reserving external hardware considerations for later.

After reading this chapter you should:

• Understand that the 6802 MPU has two general purpose data registers,
Accumulator A and Accumulator B, both of which are interchangeable
for the vast majority of instructions.

• Realize that the 6802 is an eight-bit device by virtue of its eight-bit ALU
and Data buses.

• Understand that the 6802 has 2 16-bit address registers, the Index
register and Stack Pointer register.

• Understand the function of the C, N, Z, V and H flags in the Code
Condition register.

What exactly is an MPU? This question is best approached from a his-
torical perspective. In 1968, Robert Noyce (one of the inventors of the
integrated circuit), Gordon Moore1 and Andrew Grove left the Fairchild
Corporation and founded their own company, which they called Intel.2

Within three years, Intel had developed all the basic types of semiconduc-
tor memories used today — dynamic and static RAMs and EPROMs.

As a sideline Intel also designed large-scale integrated circuits to cus-
tomers’ specifications. In 1971 they were approached by a Japanese maker

1Moore’s law stated in 1964 that the number of elements on a chip would double every
18 months, although this was subsequently revised to 2 years.

2Reputed to stand for INTELligence or INTegrated ELectronics.

79
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of electronic calculators called Busicom, and asked to manufacture a suit-
able chip set. At that time calculators were a fast-evolving product and
any LSI devices were likely to be superseded within a few years. This of
course would reduce an LSI product’s profitability and increase its cost.
Engineer Ted Hoff — reputedly while on a topless beach in Tahiti — came
up with a revolutionary way to tackle this project. Why not make a simple
von Neumann CPU on silicon? This could then be programmed to im-
plement the calculator functions, and as time progressed these could be
enhanced by developing this software. Besides giving the chip a longer
and more profitable life, Intel were in the business of making memories
— and computer-like architectures need lots of memory. Truly a brain
wave. Busicom endorsed the Intel design for its simplicity and flexibility
in late 1969, rather than the conventional implementation.

Federico Faggin joined Intel in spring 19703 and by the end of the year
had produced working samples of the first chip set. This could only be
sold to Busicom, but by the middle of 1971, in return for a price reduc-
tion, Intel were given the right to sell the chip set to anyone for non-
calculator purposes. Intel was dubious about the market for this device,
but went ahead and advertised the 4004 “Micro-Programmable Computer
on a Chip” in the Electronic News of November 1971. The term MicroPro-
cessor Unit (MPU) was not coined until 1972. The 4004 created a lot of
interest as a means of introducing intelligence into electronic products.

The 4004 MPU featured a four-bit Data bus, with direct addressing of
512 bytes of memory. Clocked at 108 kHz, it was implemented with a tran-
sistor count of 2300.4 Within a year the eight-bit 200 kHz 8008 appeared,
addressing 16 Kbytes and needing a 3500 transistor implementation. Four
bits is satisfactory for the BCD digits used in calculators but eight bits is
more appropriate for intelligent data terminals (like cash registers) which
needed to handle a wide range of alphanumeric characters. The 8008
was replaced by the 80805 in 1974, and then the slightly modified 8085
in 1976. The 8085 is still the current Intel eight-bit device. Strangely,
four-bit MPUs were to outsell all other sizes until the early 1990s.

3He was later to found Zilog.
4Compare with the Pentium Pro (also known as the P6 or 80686) at around 5.5 million!
5Designed by Masatoshi Shima, who went on to design the 8080-compatible Z80 for

Zilog.
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The MPU concept was such a hit that many other electronic manu-
factures clambered on to the bandwagon. In addition, many designers
jumped ship and set up shop on their own, such as Zilog. By 1976 there
were 54 different MPUs either available or announced. One of the most
successful of these was the 6800 family produced by Motorola.6 The
Motorola 6800 had a clean and flexible architecture, could be clocked at
2 MHz and address up to 64 Kbyte of memory. The 6802 (1977) even had
128 bytes of on-board memory and an internal clock oscillator. This de-
vice is the subject of this text. By 1979 the improved 6809 represented
the last in the line of eight-bit devices, competing mainly with the Intel
8085, Zilog Z80 and MOS Technology’s 6502.

The MPU was not really devised to power conventional computers, but
a small calculator company called MITS,7 faced with bankruptcy, took a
final desperate gamble in 1975 and decided to make and market a com-
puter. This primitive machine, designed by Ed Roberts, was based on
the 8080 MPU and interacted with the operator using front panel toggle
switches and lamps — no keyboard and VDU. The Altair8 was advertised
for $500, and within a month MITS had $250,000 in the bank for advance
orders.

This first Personal Computer (PC) spawned a generation of computer
hackers. Thus an unknown 19-year-old Harvard computer science stu-
dent, Bill Gates, and a visiting friend, Paul Allen, in December 1975 no-
ticed a picture of the Altair9 on the front cover of Popular Electronics and
decided to write software for this primordial PC. They called Ed Robert
with a bluff, telling him that they had just about finished a version of the
BASIC programming language that would run on the Altair. Thus was the
Microsoft Corporation born.

In a parallel development, 22 Altair owners in San Francisco set up the
Home-brew club. Two members were Steve Jobs and Steve Wozniak. As
a club demonstration, they built a PC which they called the Apple.10 By

6Motorola was launched in the 1930s to manufacture motor car radios, hence the name
“motor” and “ola” (as in pianola).

7Located next door to a massage parlor in New Mexico.
8After a planet in Star Trek.
9The picture was just a mock up, they actually were not yet available; an early example

of computer ‘vaporware’!
10Jobs was a fruitarian and had previously worked in an apple orchard.
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1978 the Apple II made $700,000; in 1979 sales were $7 million, and then
$48 million…

The Apple II was based around the low-cost 6502 MPU which was pro-
duced by a company called MOS Technology. It was designed by Chuck
Peddle, who was also responsible for the 6800 MPU, and had subsequently
left Motorola. The 6502 bore an uncanny resemblance the the Motorola
6800 family and indeed Motorola sued to prevent the related 6501 MPU
being sold, as it even had the same pinout as the 6800. The 6502 was one
of the main players in PC hardware by the end of the 1970s, being the
computing engine of the BBC series and Commodore PETs amongst many
others.

What really powered up Apple II sales was the VisiCalc spreadsheet
package. When the business community discovered that the PC was not
just a toy, but could do ‘real’ tasks, sales took off. The same thing hap-
pened to the IBM PC. Reluctantly introduced by IBM in 1981, the PC
was powered by an Intel 8088 MPU clocked at 4.77 MHz together with
128 Kbyte of RAM, a twin 360 Kbyte disk drive and a monochrome text-
only VDU. The operating system was Microsoft’s PC/MS-DOS version 1.0.
The spreadsheet package here was Lotus 1-2-3.

Intel had introduced the 29,000-transistor 8086 MPU in 1978 as a 16-
bit version of the 8085 MPU. It was designed to be compatible with its
eight-bit predecessor in both hardware and software aspects. This was
wise commercially, in order to keep the 8085’s extensive customer base
from looking at competitor products, but technically dubious. It was such
previous experience that led IBM to use the 8088 version, which had a
reduced eight-bit Data bus and 20-bit Address bus11 to save board space.

In 1979 Motorola brought out its 16-bit offering called the 68000 and
its eight-bit Data bus version, the 68008 MPU. However, internally it was
32-bit, and this has provided compatibility right up to the 68060 intro-
duced in 1995 and ColdFire RISC device launched in 1997. With a much
smaller eight-bit customer base to worry about, the 68000 MPU was an
entirely new design and technically much in advance of its 80X86 rivals.

The 68000 was adopted by Apple for its Macintosh series of PCs. How-
ever, the Apple Mac only accounts for less than 20% of PC sales. Motorola

11A 220 address space is 1 Mbyte, and this is why for backwards compatibility MS-DOS
is still limited to 1 Mbyte of conventional memory.
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MPUs have been much more successful in the embedded microproces-
sor market, the area of smart instrumentation from egg timers to aircraft
management systems. Of course, this is just the area which MPUs were de-
veloped for in the first place, and the number, if not the profile and value,
of devices sold for this purpose exceeds those for computers by more
than an order of magnitude. Most of these are eight-bit devices, and are
single-chip microcontrollers developed from the original 6800 architec-
ture, including the 68HC05 and 68HC11 devices, and are still very popular
in applications such as automotive displays and smart cards. Thus the
original 6800 MPU is still relevant.

A somewhat simplified view of the 6802 MPU12 is shown in Fig. 4.1. If
the 6802’s structure has more than a passing resemblance to our make-
believe computer’s architecture, then this is not a coincidence and you
should first read Chapter 3’s discussion of the function of the various
blocks.

Externally the 6802 MPU is characterised as three buses.

Data bus
Eight lines carry data both to and from memory and input/output inter-
faces one byte at a time. Information flow is in both directions. During a
Read cycle data on these lines is taken into the MPU’s Data register. Dur-
ing a Write cycle the contents of the MPU’s Data register is placed onto
the Data bus, from where it can be collected by external memory or other
circuitry.

Address bus
16 lines carry information concerning the location where the state of the
Data bus is to be deposited during a Write cycle or obtained from during a
Read cycle. There are 216 = 65,636 = 64 K locations directly addressable
with this size of Address bus. As each location holds a byte of data, then
the maximum system memory capacity is 64 Kbytes.

Control bus
The assortment of 13 status, clock and control signals shown in Fig. 4.1
are collectively known as the Control bus. We will look at these signals

12This is virtually identical to the other members of the 6800 series: the original 6800
device which lacked the internal oscillator and RAM, and the 6808 which has no internal
RAM.
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in detail in Chapter 10, here we can briefly look at a few of the more
important of these.

• R/W is a status signal which is high when the MPU is doing a Read and
low during a Write cycle (see Figs. 10.1 & 10.2 on pages 194 & 195).

• VMA stands for Valid Memory Access, and indicates that the pattern
on the Address bus is a legitimate address.

• E is the clock signal output used to synchronize data transfers during
Read and Write cycles (see Figs. 10.1 & 10.2 on pages 194 & 195).
With a 4 MHz crystal across the oscillator inputs XTAL & EXTAL the E
frequency is 1 MHz.

• Reset forces the contents of the top two bytes of memory (FFFE:Fh)
into the Program Counter (see Fig. ?? on page ??). The programmer
will have put the start address of the software in this Reset vector as
part of the program.

• Halt stops the MPU at the end of a bus cycle and brings the Data and
Address bus line open circuit.

• IRQ is the Interrupt ReQuest line by which an external thing can re-
quest that the MPU quits its current processing and jump to a soft-
ware routine that will service the interrupting device. The NMI Non-
Maskable Interrupt line is similar, but cannot be locked out by the I
bit in the Code Condition register (see page 88).

Of importance to the programmer are the data and address registers.
Our BASIC computer had only one 8-bit Accumulator data register. Here
we now have two Accumulator registers, A and B, which may be used
interchangeably for the vast majority of instructions. That means that
virtually any instruction that can operate on Accumulator A has a coun-
terpart than targets Accumulator B in the same manner, e.g. clra and
clrb. This general-purpose property is sometimes known as orthogonal-
ity, and contrasts with the competing Intel 8080 family where most of the
registers have specialized functions. An Accumulator is normally used by
the ALU either as a source operand or/and to hold the outcome of an in-
struction. For example adda 6000h adds the contents of 6000h to that of
the source operand in Accumulator A, putting the outcome back in Accu-
mulator A. In dealing with either of these data registers, the programmer
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must remember that data can only be handled in byte sized chunks. The
size specification of an MPU is usually on the basis of the processing ca-
pacity of the ALU. The Data bus size usually, but not always, matches
this size. For example the 68008 MPU has an eight-bit Data bus, 16-bit
ALU and 32-bit internal registers! Objects larger than 8 bits have to be
processed a byte at a time (for example see Example 3.2 on page 69).

The 6802 MPU also has two address registers; the Index register (IX)
and the Stack Pointer register (SP) which are 16 bits long. Unlike the ac-
cumulators, the address registers are specialized, each having a specific
task. The Index register is normally used to point to an object in mem-
ory which can be accessed using the Indexed address mode, as has been
described in page 61. Motorola intended the address registers to hold
pointers into memory and not to be used for other nefarious purposes.
Because of this, only a rather limited repertoire of instructions can mod-
ify an address register. However, as it is possible to both increment and
decrement (inx and dex) the Index register, it is sometimes used to keep
a 16-bit (65,536) count, for example Program ??. This is useful as the
equivalent using an accumulator or single memory location is restricted
to eight bits; a count range up to 256. The Stack Pointer is used to act
as a type of book mark pointer to an area of memory, known as a stack,
used for last-in first-out temporary storage — but we will leave this to
Chapter 8. The SP is rarely used for anything other than its legitimate
task.

Like the address registers, the Program Counter (PC) also holds an ad-
dress; this time the location of the current instruction. It is logical that it
also should be 16 bits wide. The PC is initialised to the start of the pro-
gram on reset, as described on page ??. Normally the PC automatically
advances as each instruction byte is fetched from memory to the Instruc-
tion register for decoding, as shown in Figs. 3.2—3.5 in Chapter ??. Only
Jump and Branch instructions can directly modify the PC.

The five flags in the eight-bit Code Condition Register (CCR) provide
a status report on the ALU’s activity. The Carry, Zero and Negative flags
are standard, and are described on page 58.

Two flags are added to the complement that was available to our BASIC
computer. The V flag is set when two numbers of the same sign (that is
the MSBs are the same) are added or subtracted and give a different sign
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Figure 4.2 The Code Condition Register.

for the outcome. This oVerflow of the number into the sign position was
described back on page 10.

The H flag needs some explanation. It is possible for the programmer
to treat a byte as two 4-bit Binary Coded Decimal (BCD) digits rather than
as natural binary, as described on page 5. This format is called packed
BCD. If two such packed BCD digits are added then the Add instruction
will apply the normal natural binary rules to give the outcome. For exam-
ple 26+ 59 = 7Fh (00100110+ 01011001 = 01111111b). The outcome
needs to be corrected to give 85 (1000 0101b). The instruction daa (Dec-
imal Adjust A) can perform the correction after an addition where the
outcome is in Accumulator A. daa does this by following the algorithm:

1. Add six if the least significant nybble in A is over nine.

2. or add six if there has been a carry between the least most significant
nybble.

3. Add six to the most significant nybble if it is then greater than nine.

4. or add six to the most significant nybble if there has been a carry out.

where six is significant in that six of the hexadecimal digits A…F are illegal
in the BCD number system and have to be skipped over. Item 2 means
that the instruction has to have access to carry information between bits 3
and 4. This is the Half-carry flag. As we will see from Table ?? on page ??
only the Addition instructions activate the H flag, so daa can only be used
after an addition of two packed BCD bytes using Accumulator A. There is
no equivalent for Accumulator B.

In summary we have:
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• Carry (C): This flag is set if an Add operation generates a carry-out or a
Subtract/Compare needs a borrow. Otherwise it resets. During a Shift
operation it holds the last bit shifted out.

• oVerflow (V): If an arithmetic operation produces an incorrect result as
seen from a signed 2’s complement number perspective, this flag is set.
This occurs when the addition of two positive numbers gives a negative
sum or two negative numbers gives a positive outcome. Otherwise it
is cleared.

• Zero (Z): If an operation has a zero outcome this flag is set; otherwise
it is cleared.

• Negative (N): This shadows the most significant bit of the result of an
Arithmetic or Shift operation. If the number is to be treated as a signed
entity, then this may be interpreted as negative (= 1) or positive (= 0).
The bpl (Branch if PLus) and bmi (Branch if MInus) instructions test
this flag, see Table 6.6 on page 134.

• Half carry (H): This flag is set if an Add instruction generates a carry
between the lower and upper nybble of the sum outcome in an accu-
mulator. It is only activated by the Add instructions and is used by the
daa instruction.

With a few exceptions the flags do not function where operations are
carried out on the 16-bit address registers. The Index register does ac-
tivate Z but Table 6.7 on page 136 should be carefully referred to when
following address register manipulations by a Branch instruction.

The I mask is not a flag, but a control bit. When set to 1 an interrupt
request signal at the IRQ pin will be masked out; that is ignored. I is set
to 1 automatically when the MPU is reset and can also be set and cleared
by the programmer by using the sei (SEt I) and cli (Clear I) instructions
respectively (see Table ?? on page ??). Interrupts are the subject of Chap-
ters ?? and ??.

The 6800 family programmer’s model shown in Fig. 4.3 will be used
for the rest of the text. This shows the disembodied registers and sizes
that are available to the programmer, as well as the individual flags and
mask bit in the CCR. This simplified vision of the processor is all that a
programmer needs to know of the MPU structure in order to construct
software circuits, that is programs.
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Figure 4.3 Programmers’ model for the 6800 series MPU.

Examples

Example 4.1
Given that there is no instruction available to add the contents of
Accumulator B, treated as an unsigned byte, to the 16-bit contents
of the Index register, devise a routine to simulate this missing abx
instruction.
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Solution
The coding of Program 4.1 uses the crude method of incrementing IX
while at the same time decrementing B until zero. Thus if the contents
of B were 6 then IX would be incremented six times. Although this
is slow, the maximum value in B is only 255d, so the technique is
acceptable. Later variants of the 6800 MPU, the 6801, 6809 and
68HC11 all introduced this missing instruction.

Program 4.1 Simulating a abx instruction.

ABX: subb #1 ; Decrement the operand in B
bcs END ; IF it falls below zero THEN finished
inx ; ELSE increment IX
bra ABX ; and repeat

END: ... .....

How could you simulate a sbx instruction?

Example 4.2
It is possible to multiply a binary number by first multiplying by
two (shifting left once) and then adding the original number; that
is ×3 = ×2+×1 = N << 1+ N, where << is the Shift-Left operator
(see page 11. Given that we have now a second accumulator,
devise a routine to multiply the byte contents of Accumulator B
by three with the outcome being represented by the 16-bit word in
Accumulator A:Accumulator B. For example if B = 0FFh then the
outcome will be 2FDh in A:B; that is A = 02h and B = FDh. Memory
location 0000h can be used as a temporary store for the multiplicand.

Solution
The coding shown in Program ?? simply copies the multiplicand into
memory for safekeeping and proceeds to shift the multiplicand once
left to generate the ×2 subproduct. We see from Fig. 3.7 on page 65
that this shift ejects the most significant bit into the Carry flag. As
shifting an 8-bit object left will require a double-byte place holder,
the precleared upper byte (which is defined to be in Accumulator A)
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is incremented if this shift makes the Carry flag 1. Effectively this
simulates this bit shifting into the upper byte.

Program 4.2 Multiplying a byte by 3.

.define TEMP = 0000h

MUL_3: stab TEMP ; Put the multiplicand away for temporary storage
clra ; Zero the upper byte of the eventual product

; Generate the x2 of the multiplicand by shifting left once
aslb ; Shift left the lower byte of the multiplicand
bcc NEXT ; IF no carry THEN leave upper byte zero
inca ; ELSE upper byte is 1

; Now add the x1 of the multiplicand
NEXT: addb TEMP ; Add the unshifted multiplicand

adca #0 ; with carry to the upper byte giving the product

Example 4.3
A certain digital filter program has to generate the constant N as
given by the relationship:

N = cos

(
2π × f
fs

)

where f is the center frequency and fs is the sampling rate. Given
f = 60 Hz and a sampling rate of 500 per second determine a coding
to multiply an unsigned byte in Accumulator B by this constant.

Solution
We have:

N = cos
(

2π × 60

500

)
= 0.7289686

Now we can approximate this multiplier as a summation of power-
of-two fractions:

N = 1

2
+ 1

8
+ 1

32
+ 1

128
= 0.7265625
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which has an error of only around 0.3% (actually adding 1
512 + 1

2048
to the series would give an accuracy to 0.004%, but as we are dealing
with an eight-bit quantity this sort of accuracy doesn’t accord with
the resolution of around 0.5%).

Division by 2k is simply affected by shifting right k times (see
page 11). As the outcome is less than the original byte value, we can
use Accumulator A as a summation as the data in Accumulator B
is logically shifted right. To do this it will be useful to use the
instruction aba (Add B to A), which will be discussed on page 115.
The listing of Program 4.3 is then self explanatory.

Program 4.3 Division by repetitive shift and add.

DIG_FILTER: clra ; Zero the summation

lsrb ; N/2
aba ; SUM = N(1/2)

lsrb
lsrb ; N/8
aba ; SUM = N(1/2+1/8)

lsrb
lsrb ; N/32
aba ; SUM = N(1/2+1/8+1/32)

lsrb
lsrb ; N/128
aba ; SUM = N(1/2+1/8+1/32+1/128)

Self-assessment questions

4.1 Given that there is no Clear Index register instruction, can you
deduce at least one way of zeroing an address register?

4.2 The 6800’s ALU has only an eight-bit capacity. How do you think
it implements operations on word-sized address registers, such as
inx and what speed implication does this have?
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4.3 The 6502 MPU (the computing engine of, amongst others, the BBC
microcomputer, APPLE II and Commodore PET PCs) was designed by
Chuck Peddel who designed the 6800 MPU and then left Motorola
and set up (with others) MOS Technology (later bought over by
Commodore). This popular device has one 8-bit Accumulator A
and two 8-bit Index registers, IX and IY. Can you figure out some
advantages and disadvantages of this architecture over the 6800
structure? In particular, what form would Indexed addressing take
in this processor?

4.4 Test your knowledge by answering the following short questions
without looking back.

• What is the difference between a MPU’s hardware and software?

• Which three buses interconnect the MPU with memory and
peripheral interface circuitry and what is their function?

• What two broad types of data are stored in memory?

• How many bits of data are stored in each memory location of
a microprocessor-based circuit built with a 6800-type MPU and
how many such memory locations can be directly accessed?

• Name the various registers in the programmer’s model of the
6800 and briefly give their function.

• Name the various flags and mask bit in the Code Condition
Register and briefly state their function.



CHAPTER 5

Address modes

The majority of instructions act on data. This data may lie either in an in-
ternal register or out in memory. Thus the location of such operands must
be part of the instruction. There are several different ways of specifying
the effective address (ea) of an operand. The various address modes have
characteristics which are advantageous in appropriate situations. In this
chapter we will look at the more common of these address modes, their
properties and application areas.

We have already covered most of these back in Chapter 3 on pages
59–63 in conjunction with our BASIC computer, and now would be a good
time to review this material. As we will not formally look at the 6800’s
instruction set until the next chapter, we will use BASIC’s instructions
listed in Table 3.1 on page 60 for our illustrative examples.

After reading this chapter you will:

• Know that an address mode is the way an instruction pin-points its
data.

• Know that data can be a literal constant, located in an internal register
or out in memory.

• Know that all instructions are represented as a one-byte operation code
(op-code) followed by zero, one or two bytes representing additional
information regarding the location of the operand.

• Know that Inherent instructions are completely specified by the op-code
byte alone and usually have their operands explicitly in or implicitly
affect internal MPU registers; for example clra coded as 4Fh.

• Know that constant operands are specified using the Immediate address
mode, where the byte or bytes following the op-code is the literal data
e.g. ldaa #8 coded as 86-08h or ldx #1234h coded as CE-12-34h.

94
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• Know that operands that are located in fixed memory locations can be
specified using an Absolute address mode.

• Short Absolute addressing, known as Direct can be used for many
instructions where the data lies in the first 256 bytes of memory,
between (00)00 – (00)FFh; for example ldaa 80h coded as 96-80h.

• Long Absolute addressing, known as Extended can be used for
data located anywhere in memory, between 0000 — FFFFh; for
example ldaa 6000h coded as B6-60-00h.

• Know that operands that are located in variable memory locations
can be specified by using the Index register as a pointer with Indexed
addressing; for example ldaa 6,x coded as A6-06h.

• Know that Branch instructions use Relative addressing where the
trailing byte is treated as a 2’s complement addend to the Program
Counter, causing program execution to skip to an instruction forwards
or backwards; for example bra .+08 coded as 20-08h.

Virtually all instructions act on data; either outside the processor in its
memory space, or in an internal register. Thus the op-code must include
bits which inform the MPU’s Instruction register where this data is being
held. There are a few exceptions to this, the so called Inherent operations,
such as nop (No OPeration) and rts (ReTurn from Subroutine). Single-
byte instructions whose operand is a single register, for example inca
(INCrement accumulator A), are also classified as Inherent.

With the exception of Inherent instructions, the bytes following the op-
code are either the (constant) operand itself, or more usually an address
of or pointer to where in memory the operand can be found. The simplest
of these, where the absolute address itself follows, as in:

ldaa 1000h ; [A] <- [1000] {Coded as B6-20-00h}

Absolute addressing is rather inflexible, as the address is fixed as part
of the program, and this must be allocated by the programmer.

One of the most important features of a processor is its range of ad-
dress modes, that is different techniques for evaluating the operand ad-
dress. To see why this is important, consider, say, the problem of adding
the constant 30h to each element of an array of 256 data bytes stored
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consecutively between 1000h and 10FFh. If we had only absolute ad-
dressing, the routine would look something like the listing in Table 5.1(a),
which is a pity because the same action is repeated 256 times, and takes
2048 bytes of program memory.

An alternative strategy is to use an address mode where the address
is stored in a register which can be incremented, and fold our program
into a loop as shown in Table 5.1(b). This only takes 15 bytes, less than
1% of the absolute version. Furthermore, the array can be of any length
without increasing the size of the program. However, there is a penalty to

Program 5.1 Initializing a 256-byte array.

BEGIN: ldaa 1000h ; Get array[0], 4˜
adda #30h ; Add the constant (#) 30h, 2˜
staa 1000h ; Restore it, 5˜
ldaa 1001h ; Get array[1]
staa #30h ; Add the constant 30h
staa 1001h ; Restore it
ldaa 1002h ; Get array[3]
" " ; and so on
" "
" "
" "
ldaa 10FFh ; Get array[255]
adda #30h ; Add the constant 30h

END: staa 10FFh ; Restore it (phew!)

(a) Linear coding.

BEGIN: ldx #1000h ; Point IX to array [0], 3˜
; While address less than 1100h add 30h to the contents of that address
LOOP: ldaa 0,X ; Get array [IX], 5˜

adda #30h ; Add the constant 30h, 2˜
staa 0,X ; Put it away at [IX], 6˜
inx ; and increment pointer, 4˜
cpx #1100h ; Check for past array [256], 3˜
bne LOOP ; and repeat if not, 4˜

END:

(b) Equivalent circular mode.
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pay for this flexibility. The more complex address mode takes longer to
execute and the loop construct has the Test and Branch overhead. Thus,
the absolute array program would take 2816 (256 × 11˜) clock cycles,
whilst the loop equivalent takes considerably longer at 6147 (3+256×24˜)
cycles to execute. At a clock rate of 1 MHz this can be read as µs.

In the remainder of this section, we will look at the 6800 address
modes. In this catalog, represents one byte and in a similar

way represents two bytes.

Inherent

op-code

All the operand information is contained in the op-code, with no specific
address-related bytes following. An example is nop (No OPeration) coded
as 01h. Motorola also classify most Register-Direct instructions as inher-
ent, for example inca (INCrement A) coded as 4Ch. Such instructions
contain all the register information in the single-byte coding.

Immediate

op-code constant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 bit (0 – 255)

op-code constant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16 bit (0 – 65535)

With Immediate addressing, the byte or two bytes following the op-code
is treated as a constant datum and not an address. Some examples are:

adda #30h ; Add the const 30h to Acc. B {Coded as CB-30h}
cmpb #50 ; Compare [B] with the const 50d {Coded as C1-32h}
ldx #2000h ; Put the const 2000h in IX {Coded as 8E-20-00h}
cpx #21FFh ; Compare [IX] with const 21FFh {Coded as 8C-21-FFh}
lds #0D000h ; Set the Stack Pointer to 0D000h {Coded as 8E-D0-00h}

The pound (hash) symbol # is commonly used to indicate a constant num-
ber. The instruction adda 30h would be interpreted as “add the byte out
in memory at 30h to Accumulator A” — a perfectly legitimate command,



98 THE ESSENCE OF THE 6800 MICROPROCESSOR

but very different from what was desired. A constant can never be a des-
tination, for example stab #6 is obviously nonsense — you cannot put
something in the literal 6!

Another frequent error is mismatch of size; for example adda #500.
The literal 500 cannot fit in a byte — you cannot put a quart into a pint
pot! For the two accumulators the legitimate range of literals is 00 – FFh
(0 – 255d) and for the two 16-bit address registers it is 0000 – FFFFh
(0 – 65,535).

Absolute
op-code Page 0 address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Short (Direct)

op-code 2-byte address . . . . . . . . Long (Extended Direct)

In Absolute addressing, the address itself — either in whole or part —
directly follows the op-code. Motorola terms the long 16-bit address ver-
sion as Extended Direct. There is a short version just called Direct, where
the single-byte address byte is extended to a full 16-bit address by the
processor appending a zero byte. The effective address (ea) then lies in
the range (00)00 – (00)FFh. If the address space is conceptually divided
into segments or pages of 256 bytes, then this short range can be called
page 0 addressing.

Absolute addressing is used when the operand is located in a known
fixed address. This might be an assigned position used to store a datum
or the fixed location of a hardware port (see Chapter ??). Some examples
are:

ldaa 80h ; Copy the contents of 0080h into A {Coded as 86-80h}
stab E9h ; Copy the contents of B out to 00E9h {Coded as D7-E9h}
ldaa 9000h ; Copy the contents of 9000h into A {Coded as B6-90-00h}
inc 2000h ; Increment the contents of 2000h {Coded as 7C-20-00h}

The short Direct form of absolute addressing is one byte shorter and
takes one bus cycle less in execution time (see Figs. 10.1 & 10.2 on
pages 194 & 195). Thus with instructions that have short and long ex-
tended forms of this type of address mode, it is advantageous to locate
data in page 0 of memory. These first 256 bytes of memory can be thought
of as being an extension of the two accumulators, in allowing relatively
high-speed access to data. Unfortunately, many instructions that operate
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directly on memory, such as Increment, Decrement and Clear, have only
the Extended version of absolute addressing1 (see Appendix B).

Usually the assembler that is translating the program to machine code
will pick the most efficient form of absolute addressing automatically.
Some assemblers allow the programmer to override this and specify the
form directly.

Indexed
op-code Unsigned offset

Rather than specify an absolute address as part of the instruction, an-
other way of pin-pointing an object in memory is to put its address into
the Index register (typically using the ldx instruction, as in line 1 of Pro-
gram 5.1(b)) and then use the Indexed address mode to access this data.
For example if you wanted to get the data at memory location 9000h into
Accumulator B then the following code would work as an alternative to
the instruction ldab 9000h:

ldx #9000h ; Point IX to datum
ldab 0,x ; Copy the data pin-pointed by the contents of IX

If you want to access a single byte then this double-barrelled approach is
not very efficient. However, indirect addressing like this comes into its
own when arrays or tables of data must be processed. In this situation the
fact that the contents of the Index register can be altered as the program
progresses, typically by incrementing and decrementing, means that large
data arrays can be processed inside a loop. A comparison between Pro-
grams 5.1(a) and (b) shows the power of this technique. In essence this
latter program illustrates the advantages of using a variable address to
locate data in memory rather than a fixed address. The Index register is
often called an Address register or pointer. Some examples are:

clr 0,x ; Clear the byte located at the pointer address
adda 4,x ; Add to A the byte located at 4 bytes above the pointer address
cmpb 55,x ; Compare the byte located at 55 bytes above the pointer address

1The son of 6800, the 6809 MPU, has both types of absolute addressing for all relevant
instructions. Furthermore, the page 0 restriction for the short version has been relaxed in
that an additional internal register, the Page register, is concatenated with the lower byte
of the address to give the effective long address. Thus by altering the contents of this Page
register the block of 256 direct location can be placed in any page in the memory space
and altered as conditions dictate.
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The 6800 MPU has only one type of Indexed address mode. All instruc-
tions using this mode have a single byte following the op-code. This is
used as a positive offset to the address in IX to create the effective ad-
dress of [IX] + #offset. The offset is internally extended to a 16-bit
value ranging from (00)00h– (00)FFh (0 – 255). Negative offsets are not
implemented. Indexed addressing, often called Address register indirect,
is such a powerful technique that newer devices have many variants of
this type of address mode. For example the 6809 MPU has 24 Indexed
modes and four Index registers!

Relative
op-code signed offset

This address mode is reserved in the 6800 MPU exclusively for the Branch
instructions.

A Branch instruction implicitely alters the smooth flow of the program
by adding or subtracting a fixed offset byte to/from the Program Counter.
Effectively this causes the program to skip to another instruction either
in advance or behind the instruction that would normally follow next.
All such instructions are coded as an op-code byte followed by a single
offset byte which is treated as a 2’s complement signed constant in or-
der to calculate the new value of the PC which will overwrite the existing
value. In implementing a skip, this offset is sign extended before addi-
tion. Effectively this means that offsets between 80h and FFh are treated
as negative. For example the instruction bra .-06 (where the notation
.nn means nn bytes from the current position), coded as 20-FAh (FAh is
the 2’s complement of 06h), when the PC is at C108h is implemented as:

1100 0001 0000 1000 [PC] = C108h
+ 1111 1111 1111 1010 Offset = FFFAh = −6
61 1110 0001 0000 0010 [PC] = C102h, which is C108h− 0006h

If calculating this by hand, it must be remembered that the PC is al-
ready pointing to the next instruction; thus the maximum forward point is
(00)7Fh+2 = 127+ 2 = 129 bytes from the Branch instruction’s op-code
and (FF)80h + 2 = −128 + 2 = 126 bytes back. Fortunately it is rarely
necessary to figure out the offset by hand. The assembler translator will
allow you to use a label at the destination instruction. Thus line 6 in Pro-
gram 5.2 is bra LOOP which is rather more readible and less error prone
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than the equivalent bra .0F8h (bra .-8).

Examples

Example 5.1
A table of data has been preloaded into memory (see Program 7.4
on page 162) between 1000h and 100Fh. Write a routine that will
extract the nth byte into Accumulator B where n is a number from 0
– 15 in Accumulator A.

Solution
As n is a relatively small number, the easiest way to approach this is:

1.Point the Index register to the first element of the array.

2.WHILE n > zero DO

•Decrement n.

•Increment the Index register.

3.Use the Index register as a pointer to load the datum into Accumula-
tor B.

Program 5.2 Extracting the nth element of a table.

GET_IT: ldx #1000h ; Set IX to point to the datum
LOOP: cmpa #0 ; Is n zero?

bne CONTINUE ; IF it is THEN continue
inx ; ELSE advance the pointer
deca ; and reduce n
bra LOOP ; and do again

CONTINUE: ldab 0,x ; Get the datum at 100nh

Actually most MPUs permit a data register to be used as the offset
rather than just a fixed offset. For example in the 6809 MPU an
accumulator can act as an offset. In this case the program reduces
to:
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GET_IT: ldx #1000h ; Set IX to point to the datum

ldab a,x ; Get the datum at 100nh

which shows the power of using a variety of Index address modes.

Example 5.2
The temperature of a biological system is sampled on a regular
basis by a 6800-based system and sequentially stored in memory
between 1000h and 2FFFh. When the experiment is over the 8192
byte samples in this memory array is to be transmitted as a time
series to a Personal Computer (PC) byte by byte through the serial
port. For the purposes of this example it may be assumed that
the serial link appears as a memory location at 8020h. When the
transmission is over a check byte is to be sent as a key that can be
used the receiver to verify the integrity of the transmission (see also
SAE 3.??). This verification byte is to be a checksum of all 8192
bytes added together modulo-256 (28). That is all bytes are to be
added together with any carries out being ignored. The PC will also
sum incoming data bytes and if everything is correct should get the
same value of checksum. When this local checksum is subtracted
from the transmitted checksum the outcome should be zero unless
transmission errors have occurred.

Your task is to transmit the data whilst calculating the checksum
on an on-going basis and finally transmit this checksum to the PC.

Solution

The straightforward way of doing this, as shown in Program 5.3, sim-
ply copies each byte at its absolute address down into Accumulator A
and then out to the serial port at 8020h. As this is done the memory
byte is added to the initially cleared Accumulator B. At the end of the
process the checksum will be in Accumulator B.

Although this works, there will be a total of 8192×3+2 = 24,578
instructions in the program. Furthermore, taking each instruction
coded as 3 bytes, over 72,000 bytes of program storage will be
required. However, there is only 65,636 (64 K) bytes available!
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Program 5.3 Generating a checksum.

UPLOAD: clrb ; Zero the checksum byte

ldaa 1000h ; Copy ARRAY[0] into MPU
staa 8020h ; Send it out to the serial port
addb 1000h ; Also add it to the checksum byte

ldaa 1001h ; Copy ARRAY[1] into MPU
staa 8020h ; Send it out to the serial port
addb 1001h ; Also add it to the checksum byte

ldaa 1002h ; Copy ARRAY[2] into MPU
staa 8020h ; Send it out to the serial port
addb 1002h ; Also add it to the checksum byte

ldaa 1003h ; Copy ARRAY[3] into MPU
staa 8020h ; Send it out to the serial port
addb 1003h ; Also add it to the checksum byte

... ..... ; Continue on for each array byte

... .....

... .....

... .....

ldaa 2FFFh ; Copy ARRAY[8091] into MPU
staa 8020h ; Send it out to the serial port
addb 2FFFh ; Also add it to the checksum byte

; Phew!!!!
stab 8020h ; Finally send the checksum out the serial port

As we are doing the same thing 8192 times, with the only dif-
ference being the sequentially advancing address, this is obviously
a candidate for the use of a loop structure. Using this loop, as in
Program 5.4, the Index register is utilized as a pointer to ARRAY[n],
effectively simulating the array index n. Initializing it to the location
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of ARRAY[0] at the beginning, incrementing it on each pass through
the loop and inspecting it for n reaching 8192 gives the process
coded in the program. A task list based on this structure would be:

1.Clear checksum.

2.n = 0.

3.WHILE n < 8192 DO

•Copy ARRAY[n] to the serial port.
•Add ARRAY[n] onto checksum modulo-256
•Increment n.

4.Copy checksum to serial port.

Program 5.4 Generating a checksum in a loop.

UPLOAD: clrb ; Task1: Zero the checksum byte

ldx #1000h ; Task2: Point to ARRAY[0]

; Task 3
LOOP: ldaa 0,x ; Copy ARRAY[n] into the MPU

staa 8020h ; Send it out to the serial port
adda 0,x ; Also add it to the checksum byte

inx ; Advance pointer (n++)
cpx #3000h ; Over the top yet?
bne LOOP ; IF not THEN again

stab 8020h ; Task 4: Send the checksum out the serial port

The coding follows the task list closely. The total length is nine
instructions, requiring 20 bytes of program storage. Although it is
dramatically shorter than the linear equivalent, it does take rather
longer to execute. This is because the increment pointer and loop
test instructions supporting the loop are executed 8192 times. Also
the Indexed address mode takes longer to execute than the Extended
equivalent. For example from Appendix B ldaa 1000h takes 4 cycles
to implement and ldx 0,x takes 5 cycles — shown as 4˜ and 5˜
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respectively. At a clock rate of 1 MHz this translates to 4µs and
5µs respectively. From this instruction set the execution time is
229.386 ms against the linear equivalent of 106.503 ms. In practice
the relatively slow time of transmission over the serial link would
make this processing time irrelevant.

Example 5.3
The 6809 MPU has a set of long Branch instructions that mir-
ror the normal instruction which have a skip range of only +129
through −126 bytes and can hop to anywhere in program memory.
Show how you might construct a routine that simulates the long
Branch lbeq FRED, where FRED is outside the normal short skip
range.

Solution
The only instruction that alters the state of the Program Counter is
the Jump instruction. Thus if we use a normal conditional Branch
instruction to hop over a jmp FRED instruction if the outcome is not
equal to zero thus:

; Test of data
bne NEXT ; IF Not Equal to zero THEN do not go to FRED
jmp FRED ; ELSE go to FRED

NEXT: ... ....
... ....
... ....

... ....

... ....
FRED: ... .... ; A long way away!

Actually the assembler used in this test has the ability to generate
this code as a type of macro if it can determine that the destination if
outside the short range. If the programmer uses suffixes the Branch
mnemonic by j, e.g. jbeq (with the exception of jbr instead of jbra)
then this conversion will be done automatically. However, features
like this are at the whim of the producer of the assembler software.
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Example 5.4
In Program 5.2 in Example 5.1 evaluate the offset bytes for the two
Branch instructions.

Solution

1.The instruction bne CONTINUE is indicating that a skip of four
bytes is necessary to move the PC down from pointing to the inx
instruction down to the ldab 0,x instruction. Counting from
the instruction following bne gives 1+ 1+ 2 bytes to advance to
the instruction labelled CONTINUE. Given the op-code for bne is
26h then the instruction is coded as 26-04h.

2.The instruction bra LOOP is indicating a backwards skip from
the following instruction to the instruction labelled LOOP.
Counting back from ldab 0,x gives 2+1+1+2+2 = −8 bytes.
To calculate the offset byte we have to figure out the 2’s
complement of 08h or 00001000b. From page 9 we need to
invert and add one:

00001000 =⇒ 11110111;+1 = 11111000 = F8h

With the op-code for bra of 20h we have a coding of 20-F8h for
this instruction.

With the help of Appendix B the machine code for the program
becomes:

CE-10-00
81-00
26-04
08
4A
20-F8
E6-00



ADDRESS MODES 107

Self-assessment questions

5.1 Using the Instruction set of Appendix B determine the machine
coding for Program 5.4 in Example 5.2.

5.2 A electrocardiogram (ECG) signal is sampled 256 times and the
digitized values stored in memory page 1000–10FFh. Design a
program using Indexed addressing to scan through this data looking
for the maximum value. This value is to be in Accumulator B at the
end of the routine.

5.3 Interfacing digital electronics to the analog world invariably intro-
duces noise into the signal, even if there was none there before. One
of the simplest filtering algorithms to enhance the signal to noise
ratio is digital smoothing. This technique involves generating a com-
posite value in which each point is replaced by an average of itself
with its nearest neighbours; i.e. post samples. This is expressed by
the formula:

Ft = (0.25)At−2 + (0.5)At−1 + (0.25)At

Assuming that the byte representing the reading two samples ago,
At−2, is in memory at 0080h, the last sample At−1 in 0081h and the
current sampleAt in 0082h code a routine using the Indexed address
mode that produces the smoothed sample Ft in Accumulator B. You
can easily divide by powers of two to give 1

2 and 1
4 by shifting the

data in situe, as described on page 11, before adding together.

5.4 Repeat Example 3.2 on page 71 to add 2 double-byte numbers out in
memory to give a 17-bit outcome. This time use Indexed addressing
to pin-point the data bytes. Compare the length and execution time
of your outcome as against the Extended addressing shown in the
solution Program 3.6.

5.5 Assuming that the data array of Fig. 3.8 on page 69 is moved to
memory at 0000–0006h redo the coding of SAQ 5.4 but using
Direct addressing. In this case evaluate the length of the coding
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and execution time and compare with those of the Extended and
Indexed versions. What potential disadvantage is there in using
page 0 memory to locate arrays of data?



CHAPTER 6

The instruction set

If you like to think of writing a program as analogous to preparing an
elaborate meal, then the address modes discussed in the last chapter are
the various ingredients available to the cook. For any given cooking ap-
pliance, such as a microwave oven or electric stove (the hardware) there
are a range of processes: steaming, frying, boiling etc. Each process will
be listed with properties in the appliance’s manual, and in our frame of
reference translate to the instruction set.

The 6800 MPU uses 197 of the possible 256 combinations provided for
with a one-byte op-code. If we factor out the various address modes this
gives 72 unique instructions. Many of these are variations on the same
theme (for example Load A, Load B, Load IX, Load SP) or are rarely used. Up
to the moment we have survived quite well on the diet of 34 instructions
listed in Table 3.1 on page 60. As these instructions are directly usable for
our MPU, now would be a good time to review this material. Here we will
look at the majority of 6800 instructions, but will prospone detailed dis-
cussion of instructions mainly associated with subroutines and interrupts
to Chapters 8 and ??. A convenient table of commonly used instructions
is given at the end of this chapter in Table 6.10 and a full instruction set
with op-codes, instruction lengths and execution times in Appendix B.

After reading this chapter you will:

• Know that Movement instructions, copying data in-between registers
and memory, are the most used and flexible of the instruction categories.

• Appreciate that the processor can directly implement the common
arithmetic operations of Addition, Subtraction, Incrementation and
Decrementation.

• Know that data can be shifted logically or arithmetically, or rotated

109
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through the C flag, either directly in memory or in an accumulator
register.

• Understand how to use the four basic logic instructions to invert, set,
clear, toggle, bit test and differentiate data.

• Know how to compare or test signed or unsigned data for differences
and relative magnitude, and take appropriate action.

• Recognize the various different Conditional Branches, and especially
the different usage depending on whether the compared data is signed
or unsigned.

• Know how to explicitly alter the state of the various flags/mask bits in
the CCR.

• Understand the meaning of the term read–modify–write instruction.

The 6800’s instruction set can conveniently be divided into nine groups
as follows.

Movement instructions
Around one in three instructions move data around without alteration in
between registers and memory.1 With this in mind the instructions in
Table 6.1 will be the most used in the repertoire.

The Load and Store instructions copy data in-between memory and
register.

• The operation of copying out to memory is known as storing and
here the contents of the destination memory byte becomes an im-
age of the accumulator. The staa and stab instructions are used
for Accumulator A and B respectively. Note that the original data is
unaltered by this process.

• The converse operation of copying data from a memory byte into
one of the accumulators is known as loading. The two instructions
of relevance here are ldaa and ldab . Again the original data remains
unaltered.

It is possible to copy double bytes between the two address registers
and memory, and the pertinent instructions here are given in Table 6.7.

1A straw poll of the programs in the last chapter produced a figure of around 52%.
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Table 6.1 Move instructions.

Flags
Operation Mnemonic V N Z C Description

Load Moves memory data to register
to A ldaa 0

√ √ • [A]<-[M]
to B ldab 0

√ √ • [B]<-[M]

Push Moves Accumulator onto Stack
A to stack psha • • • • [A] onto stack; SP--
B to stack pshb • • • • [B] onto stack; SP--

Pull Moves stack data to Accumulator
from stack to A pula • • • • From stack to (A); ++SP
from stack to B pulb • • • • From stack to (B); ++SP

Store Moves data from register to memory
from A staa 0

√ √ • [M]<-[A]
from B stab 0

√ √ • [M]<-[B]
Transfer Copy between accumulators

A -→ B tab 0
√ √ • [B]<-[A]

B -→ A tba 0
√ √ • [A]<-[B]

0 Flag always reset
1 Flag always set
• Flag not affected√

Flag operates in the normal way
++ Incremented automatically before use
-- Decremented automatically after use
[ ] Contents of

Data may be replicated from one accumulator to another by using the
two Transfer instructions tab and tba (see Program 6.8). Thus if [A]
were 55h, then tab would result in both accumulators holding the datum
55h.

The Push and Pull instructions need some clarification. In virtually
all programs of any consequence the programmer sets aside an area of
memory used for temporary storage known as a stack. As can be seen in
Fig. 6.1 this can be visualized as a notebook whose leaves each represent
a memory location and with a bookmark pointing to the currently open
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Figure 6.1 Pushing and pulling with the stack.

blank page known as a Stack Pointer. If the programmer wishes to save
the contents of, say, Accumulator A, the instruction psha will copy the
contents of A into the memory location ‘pointed to’ by the Stack Pointer
address register, which is then automatically decremented (SP--) to point
to the next empty location (equivalent to turning the page in the notebook
and moving the marker before closing). In a similar manner the contents
of Accumulator B can be pushed onto the stack by using pshb. Each
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time a datum is pushed out to the stack the Stack Pointer automatically
decrements to point to the next available leaf. The situation after two
pushes is shown in Fig. 6.1(c).

In a comparable way data may be retrieved in a last-in first-out (LIFO)
fashion using the two Pull2 instructions. The effect of pulling out the last
byte into Accumulator B and then the penultimate byte into A is shown in
Figs. 6.1(d) and (e). Notice how the Stack Pointer is automatically prein-
cremented (++SP) each time a datum is retrieved. This is equivalent to
opening the notebook at the marked page and turning back one page with
the marker to get at the last note.

The LIFO nature of this push-down stack must be remembered when
pulling out data. Thus the following code fragment:

psha ; Push out [A]
pshb ; and [B]
...

; Later
pula ; Pull out data into [A]
pulb ; and [B]

will end up exchanging the contents of A and B, i.e. [A]←→ [B]. Of course
this may be what you wanted, but on the other hand…3 Normally you
would pull out data in the opposite sequence to that pushed in.

Pushing and pulling is a useful and efficient (single-byte inherent in-
struction) way of temporarily saving the contents of an accumulator in
memory. We will see in Chapters ?? and ?? that the stack plays a vital
role in supporting subroutines and interrupt handling. Setting up an area
of memory to be a stack is normally done once at the beginning of the
program by simply loading in the address of the top location of the stack
into the Stack Pointer. From Table 6.7 the Load Stack Pointer instruction
is available to do this. Thus, for example to set up a stack with its top at
AFFFh is simply a matter of executing a lds #0AFFFh instruction!

Arithmetic instructions
The 6800 implements the normal Add and Subtract instructions, with and

2Some microprocessor manufacturers call this operation popping.
3The 6809 MPU does in fact have the instruction exg A,B which does the same thing

but does not pester the stack.
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without carry, as discussed on page 63, to add or subtract constants or
memory contents to/from any of the accumulators. In addition the in-
struction aba can be used to add the contents of the two accumulators
together, with the outcome being in Accumulator A. Similarly sba (Sub-
tract B from A) generates the difference between A and B with the outcome
being in the former.

As an example, consider the problem of dividing the unsigned contents
of Accumulator A (the dividend) by that in Accumulator B (the divisor).
The outcome quotient is to be located in B with the remainder in A. The
simplest way of doing this is to continually subtract the divisor from the
dividend, keeping a count until a borrow is generated. This count is the
quotient. The remainder can be found by adding the divisor back to the
residue in A, left after the last subtraction. This compensates for that
last underflowing subtraction. A possible implementation is given in Pro-
gram 6.1.

Program 6.1 Division by repetitive subtraction.

; Reserve a byte in memory for the quotient
.define QUOTIENT = 0000h

DIVISION: clr QUOTIENT ; Zero the subtract count

D_LOOP: sba ; Subtract divisor from dividend
bcs NEXT ; IF borrow/carry THEN finished
inc QUOTIENT ; ELSE record one more successful sub
bra D_LOOP ; and repeat

NEXT: aba ; Restore last subtract gives remainder
ldab QUOTIENT ; Quotient in B
... .....

Data in memory can be incremented or decremented apparently in situ,
as can the contents of either accumulator (or indeed an address register).
This is especially useful in counting passes through a loop, as in Pro-
gram 6.1 where QUOTIENT is located in memory at 0000h. However, inc
is not quite the same as add #1 in that it does not alter the state of the
Carry flag. Thus if you wanted to increment a 32-bit number in memory
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Table 6.2 Arithmetic operations

Flags
Operation Mnemonic H V N Z C Description

Add Binary addition
to A adda

√ √ √ √ √
[A]<-[A]+[M]

to B addb
√ √ √ √ √

[B]<-[B]+[M]
B to A aba

√ √ √ √ √
[A]<-[B]+[A]

Add with Carry Includes carry
to A adca

√ √ √ √ √
[A]<-[A]+[M]+C

to B adcb
√ √ √ √ √

[B]<-[B]+[M]+C

Clear Destination contents zeroed
memory clr • 0 0 1 0 [M]<-#00
A clra • 0 0 1 0 [A]<-#00
B clrb • 0 0 1 0 [B]<-#00

Decimal Adjust A Correct a binary addition of BCD bytes
A daa • √ √ √ √

See text
Decrement Subtract one, produce no carry

memory dec • 1 √ √ • [M]<-[M]−#1
A deca • 1 √ √ • [A]<-[A]−#1
B decb • 1 √ √ • [B]<-[B]−#1

Increment Add one, produce no carry
memory inc • 2 √ √ • [M]<-[M]+#1
A inca • 2 √ √ • [A]<-[A]+#1
B incb • 2 √ √ • [B]<-[B]+#1

Negate 2’s complement
memory neg • 3 √ √ 4 [M]<- −[M]
A nega • 3 √ √ 4 [A]<- −[A]
B negb • 3 √ √ 4 [B]<- −[B]

Subtract Binary subtraction
from A suba • √ √ √ √

[A]<-[A]−[M]
from B subb • √ √ √ √

[B]<-[B]−[M]
B from A sba • √ √ √ √

[A]<-[A]−[B]
Subtract with Carry Included carry (borrow)

from A sbca • √ √ √ √
[A]<-[A]−[M]+C

from B sbcb • √ √ √ √
[B]<-[B]−[M]+C

Note 1: Overflow set when passes from 10000000 to 01111111, i.e. a seeming sign change.
Note 2: Overflow set when passes from 01111111 to 10000000, i.e. a seeming sign change.
Note 3: Overflow set if original data is 10000000 (−128), as there is no +128.
Note 4: Carry set if original data is 00000000; for multiple-byte negation.
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at 0000:1:2:3h then this is how you could do it:

QP_INC: ldaa 0000h ; Get the LSByte
adda #1 ; Add one and generate a carry
staa 0000h ; Put it back

ldaa 0001h ; Get the next byte
adca #0 ; Add the Carry plus 0
staa 0001h ; and put it back

ldaa 0002h ; Get the next byte
adca #0 ; Add the Carry
staa 0002h ; and put it back

ldaa 0003h ; Get the MSbyte
adca #0 ; Add the Carry
staa 0003h ; and put it back

Replacing lines 1–3 by inc 0000hwill not work as no carry to higher bytes
is generated. In a similar manner dec is not quite the same as sub #1.
Can you think of an alternative way using the Zero flag?

The neg instructions enable the programmer to 2’s complement a da-
tum directly out in memory or in an accumulator. Remember from page 9
that this is equivalent to logic inversion plus one. This is used to convert
between positive and negative when the datum is treated as a 2’s comple-
ment signed number.

Instructions like inc, dec and neg that appear to the programmer to
be carried out directly in memory are in fact implemented by loading into
a temporary register in the MPU (invisible to the programmer), processing
and sending back out again. This category of instructions are known as
read–modify–write instructions. Actually the Clear memory instruction
is also read–modify–write, even though the original datum is irrelevant.

An 8-bit byte may be used to hold two 4-bit Binary Coded Decimal
(BCD) digits, such as 1001 1001 for decimal 99. Keeping two BCD digits
in each byte is sometimes known as packed BCD. The addition of BCD
bytes (see page 5) using common binary rules, as applied by the MPU’s add
instructions, requires a correction process if the output is to be in BCD
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form. For example 0000 0101+ 0000 0111 (05 + 07) gives 0000 1100
after a normal add instruction, but should give 0001 0010 (12) if the
outcome is to be in BCD form. Similarly, 0000 1001+ 0000 1001 (09 +
09) gives 0001 0010 rather than 0001 1000 (18). From these examples
it can be seen that whenever the sum of two BCD digits exceeds nine,
a correction must be made by adding six. This compensates for the six
illegal BCD combinations (i.e. 1010→ 1111), which must be skipped over.
Thus a normal addition of two packed BCD digits must be followed by the
correction algorithm:

1. Commence with the least significant digit.

2. Add the two digits using a normal binary addition.

3. Examine the outcome.

• IF the resultant 4-bit nybble is greater than nine, then add six.
• ELSE IF there was a carry from bit 3 then add six

4. Now add the two most significant BCD digits.

5. Examine the outcome.

• IF the resultant 4-bit nybble is greater than nine, then add six.
• ELSE IF there was a carry from bit 7 then add six.

Consider the following addition:
0001 0010+ 1001 0011 (12+ 93)

The following steps implement this as a BCD summation but using
binary additions:

1: 0010 + 0011 = 0101 ; adding LS decades, no correction
2: 0001 + 1001 = 1010 ; adding MS decades
3: 1010 + 0110 = 1 0000 ; correcting by addition of six.

Answer 1 0000 0101 (105).
The daa instruction will apply this correction to an addition of two

packed BCD numbers where Accumulator A holds one of the operands.
The instruction depends on information on the carry from the lower nyb-
ble to the higher nybble (from bit 3 to bit 4). This is known as a Half
carry.4 Thus it only works with instructions that activate the H flag. From

4Some microprocessors call this the Digit Carry.
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Table 6.2 we see that only the addition instructions have any effect on H.
However, daa will work after inca, as a BCD digit will never be greater
than 1010b (9) before augmentation so there will never be a half carry.
From Appendix B it can be seen that these instructions are the only ones
in the complete repertoire of 6800 instructions that alter this flag, so it
not shown in any other table in this chapter. daa is one of a very few
instructions that has no counterpart for Accumulator B.

A frequent mistake is to assume that daa will convert a natural binary
pattern in A to the equivalent BCD value. daa can only give a sensible
outcome if the original two datum bytes are already in packed BCD form.

A simple routine using this instruction to convert a binary byte in B
to a packed BCD nybble in A, simply continually decrements the binary
number whilst incrementing with a BCD correction.

BIN_2_BCD: clra ; Zero the BCD outcome to 00
LOOP: decb ; Loose one from down count in binary

beq EXIT ; IF down to zero THEN finished
inca ; Gain one up count
daa ; Correct to BCD format
bra LOOP ; and repeat

EXIT: ... .....

Logic instructions
All four basic logic operations are provided, as shown in Table 6.3.

com, coma and comb inverts (or 1’s COMplements) all bits in either a
memory location or an Accumulator register. For example:

10001110
A

coma
�

01110001
A

The anda and andb instructions bitwise AND the source in the appro-
priate Accumulator with the destination operand in memory or with a
constant. ANDing an input with a 0 always gives a 0 output, whilst with
a 1 does not change the logic value. For example:

10001110
A

anda #0Fh
�

00001110
A

which clears the upper nybble of Accumulator A.
ANDing is normally used to clear any bit or bits in the destination

operand. Thus andb #00000011b clears the upper 6 bits in Accumula-
tor B and leaves the lower two bits untouched.
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Another use of ANDing is to check the state of any bit or bits in a
datum; for example:

anda #0100b ; Check bit 2 of A
beq FRED ; IF EQual to zero THEN go to FRED

By ANDing Accumulator A with 00000100b, the outcome will be either
all zero or not if bit 2 of A is 0 or 1 respectively. In the former case,
the Z flag will be set and the following Branch if EQual to zero will be
taken. Similarly, a Branch may be executed if a group of bits are all zero;
for example, andb #0111b will cause the Z flag to be set only if bits 2, 1
and 0 are all zero.

The oraa and orab instructions work in the same way as for and. ORing
with a 0 leaves the source bit unchanged whereas ORing with a 1 sets the
bit to a 1 irrespective. Thus ORing is normally used to set any bit or bits
in the destination operand. For example:

10001110
B

orab #01
�

10001111
B

The eora and eorb instructions provide for the Exclusive-OR opera-
tion. You will recall from page 15 that EORing with a 0 leaves a data bit

Table 6.3 Logic instructions.
Flags

Operation Mnemonic V N Z C Description

AND Logic bitwise AND
A anda 0

√ √ • [A]<-[A]·[M]
B andb 0

√ √ • [B]<-[B]·[M]

Complement Invert or NOT (1’s complement)
memory com 0

√ √
1 [M]<-[M]

A coma 0
√ √

1 [A]<-[A]
B comb 0

√ √
1 [B]<-[B]

Exclusive-OR Logic bitwise Exclusive-OR
A eora 0

√ √ • [A]<-[A]⊕[M]
B eorb 0

√ √ • [B]<-[B]⊕[M]

OR (inclusive) Logic bitwise Inclusive-OR
A oraa 0

√ √ • [A]<-[A]+[M]
B orab 0

√ √ • [B]<-[B]+[M]
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unchanged, whilst EORing with a 1 inverts (or toggles) that bit. Thus, for
example if we wished to invert both bits 0 and 7 of A:

10001110
A

eora #81h
�

00001111
A

Another use for EOR is to isolate changes between two bit patterns.
From the truth table on page 14 we see that only when the two input bits
differ is the output 1. Consider as an example a program routine that
continually monitors a memory location that reflects the state of eight
control switches (see page ?? for how this is done). This routine is waiting
until someone moves a switch.

.define SWITCH = 09000h ; Switch port is at 09000h
START: ldab SWITCH ; Get initial state of switches
S_LOOP: eorb SWITCH ; Check for alterations

beq S_LOOP ; until a change occurs

Two possible scenarios are:

10011110
SWITCH

eorb SWITCH
�

10011110
B =

00000000
B Z = 1

10001110
SWITCH

eorb SWITCH
�

10011110
B =

00010000
B Z = 0

The outcome in B reflects any changes. In the first case there are no
changes; in the second Switch 4 has just been thrown from 1 to 0. You
can determine which switch changed by shifting the outcome (the change
bit) right, counting until the 1 pops out into the C flag (see Program 6.2).
You can also determine the type of change (0→ 1 or 1→ 0) by ANDing
the change byte to the new settings. If the outcome at bit 4 is a 0, then
the change must have been 1→ 0, and vice versa.

Shifting instructions
The 6800 MPU has five categories of instructions which can shift a datum
one place either left or right. Each category can target either of the accu-
mulators or operate directly using the read–modify–write mechanism on
any read/write memory location.

The linear Shift instructions lsr, lsra, lsrb (Logic Shift Right) and
asl, asla, aslb (Arithmetic Shift Left) move the 8-bit operand left or
right with the Carry flag catching the emerging bit. In both cases a logic 0
is shifted in. Thus:
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Table 6.4 Shifting Instructions.

Flags
Operation Mnemonic V N Z C Description

Shift left, arithmetic or logic Linear shift left into carry
memory asl1 2 √ √

b7

A asla1 2 √ √
b7 C ←- ←- 0

B aslb1 2 √ √
b7

Shift right, logic Linear shift right into carry
memory lsr 2 0

√
b0

A lsra 2 0
√

b0 0 -→ -→ C
B lsrb 2 0

√
b0

Shift right, arithmetic As above but keeps sign bit
memory asr 2 √ √

b0

A asra 2 √ √
b0 b7 -→ -→ C

B asrb 2 √ √
b0

Rotate left Circular shift left into carry
memory rol 2 √ √

b7

A rola 2 √ √
b7 C ←- ←- C

B rolb 2 √ √
b7

Rotate right Circular shift right into carry
memory ror 2 √ √

b0

A rora 2 √ √
b0 C -→ -→ C

B rorb 2 √ √
b0

Note 1: Some assemblers accept the mnemonics lsl, lsla and lslb as alternatives.
Note 2: V=b7⊕b6 before shift.

10001110
B

lsrb
�

01000111
B

0 , C

Linear Shifting operations are often used to bitwise examine a word.
Say, you want to determine the leftmost logic 1 bit in Accumulator B with
the position number being put in Accumulator A. For example if the pat-
tern is:
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00101111
B �

00000101
A (bit 5)

This can be realized by continually shifting the pattern under investiga-
tion right, counting the number of times until the residue is zero. The
answer given in Program 6.2 uses Accumulator A as a counter. The data
settings are successively shifted right and the count incremented. As
the Logic Shift Left operation brings in logic 0s from the left; eventu-
ally the residue will become all zeros, and the process terminated. Thus
00010111 (1)� 00001011 (2)� 00000101 (3)� 00000010 (4)�
00000001 (5)� 00000000.

Program 6.2 Shifting to find the highest set bit.

; Data is in B, position of highest set bit to be in A
HIGH_BIT: clra ; Zero count

; WHILE data is not zero, shift right and increment counter
HLOOP: lsrb ; Shift rightmost bit into Carry

beq EXIT ; IF residue is zero THEN finished
inca ; ELSE increment count
bra HLOOP ; and do another shift

EXIT: ... ..... ; Next program segment

Shifting right pops out the rightmost bit into the Carry flag. Here its
value was ignored, but in many situations this can be used to examine the
data on a bit by bit basis. For instance, instead of using the Increment
instruction we could modify our program to add all the carry bits to Ac-
cumulator A, thus counting the total number of set bits in the byte (see
Program 6.3).

Program 6.2 does not distinguish between no bits set (00000000b) and
bit 0 set (00000001b). How could you modify the program to do so?

One of the major uses of shifting is to multiply and divide by powers
of two. For example to divide by eight, shift left three times:

00011000
A (24) lsra

�
00001100

A (12) ÷2

00001100
A (12) lsra

�
00000110

A (6) ÷4
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00000110
A (6) lsra

�
00000011

A (3) ÷8

This technique can be used to divide signed 2’s complement numbers
as well, but with some modification. Let us repeat the above example, but
this time for +12. The sign bit has been shown delineated with a comma
for clarity, as described on page 9.

0,0011000
A (+24) lsra

�
0,0001100

A (+12) ÷2

0,0001100
A (+12) lsra

�
0,0000110

A (+6) ÷4

0,0000110
A (+6) lsra

�
0,0000011

A (+3) ÷8

However, we have difficulties if we try to do this for negative numbers.

1,1101000
A (−24) lsra

�
0,1110100

A (+116) ÷2!!!!

−24÷2 is most definitely not+116. Changing the rules so that instead of
automatically shifting in zeros from the left to propagating the sign bit,
that is 0s for positive and 1s for negative numbers, gives:

1,1101000
A (−24) asra

�
1,1110100

A (−12) ÷2

1,1110100
A (−12) asra

�
1,1111010

A (−6) ÷4

1,1111010
A (−6) asra

�
1,111010

A (−3) ÷8

The asr, asra and asrb (Arithmetic Shift Right) instructions differ
from the Linear Shift Right equivalents in that the sign bit is propagated
right as required for division of 2’s complement signed numbers thus:

C7 0 . This operation is normally only used for 2’s complement
signed numbers.

In all types of Shifts the oVerflow flag is set when bit 7 changes after
such a shift. This is internally implemented by exclusive ORing the C
and N flags after the shift, which translates to bit 7 and bit 6 before the
shift. The EOR gate detects differences in inputs, see page 14. If the
programmer is treating the shifted object as a 2’s complement signed
number, this signals a change of sign.
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The final category of Shifting instructions are known as circular or

Rotate instructions. These Rotate Right —
C

7 0 — and Rotate Left —
C

7 0 — instructions; ror, rora, rorb, rol, rola and rolb, are similar to
Add with Carry, in that they can be used for multiple-precision operations.
A Rotate takes in the Carry from any previous Shift and in turn saves
its ejected bit in the Carry flag. As an example consider a 24-bit word
stored in memory at 24 0030h 16 15 0031h 8 7 0032h 0

which can be shifted right once by the sequence:

lsr 0030h ; 0 , =⇒ 0030h
b16 , C

ror 0031h ; b16/ C , =⇒ 0031h
b8 , C

ror 0032h ; b8 / C , =⇒ 0032h
b0 , C

As an example consider a 24-bit number stored in memory in three
consecutive bytes at 0030:1:2h. It is necessary to count the number of
bits set to 1 in this triple-byte number.

Program 6.3 Multiple-precision shifting to find the number of set bits.

; 24-bit Data is in 0032:31:30h
; Number of bits set to be in A
COUNT_BIT: clra ; Zero count

ldab #24 ; Shift count
; WHILE data is not zero, shift right and increment counter
BLOOP: lsl 0032h ; Shift rightmost byte left once

rol 0031h ; and the middle byte
rol 0030h ; and the leftmost byte
adca #0 ; Add Carry to bit sum
decb ; Decrement shift count
bne BLOOP ; and repeat 32 times

EXIT: ... ..... ; Next program segment

One solution is shown in Program 6.3. Here the 24-bit word is shifted
left (it could equally well be done shifting right) 24 times, with the state
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of the Carry flag being added to the bit count in Accumulator A after each
shift. The loop count is kept in Accumulator B and decremented on each
multiple-precision shift.

The setting of the CCR flags can be used after an operation to deduce,
and hence act on, the state of the operand data. Thus, to determine if the
value of a port located at, say, 9000h is zero, then:

ldaa 9000h ; Get the port value
beq SOMEWHERE ; If all zero THEN skip to SOMEWHERE

will bring its contents into Accumulator A and set the Z flag if all eight
bits are zero. The Branch if EQual to zero instruction will then cause the
program to skip to another place. The N flag is also set if bit 7 is logic 1,
and thus a Load can also enable us to test the state of this bit. The problem
is Load destroys the old contents of Accumulator A, and the new data is
probably of little interest. A non-destructive equivalent of Load is Test,
as shown in Table 6.5. The sequence now becomes:

tst 9000h ; Check the port value in situe
beq SOMEWHERE ; IF all zero THEN skip to SOMEWHERE

but the Accumulator contents are not overwritten. It is also possible to
non-destructively check the contents of either accumulator in the same
manner by using the tsta and tstb instructions.

As an example, consider Program 6.2 where a shift-and-count loop was
used to determine the number of the highest set bit. At that point it was
observed that the given listing did not distinguish between bit 0 as the
highest bit and no bits set at all. We can modify this routine by checking
for all zeros before entering the shift-and-count loop. In Program 6.4 this
is done with the tstb instruction following the zeroing of the count. If
the data is zero then the count is decremented to give FFh toindicate this
situation, and the loop is skipped over.

Test can only check for all bits zero or the state of bit 7 (negative). For
data already in an accumulator, ANDing can check the state of any bit, as
shown on page 119. Consider a slightly more complex problem where the
program is to skip to FRED if bit 0 of memory location 9000h is set or to
JIM if bit 3 is set or to JILL if bit 6 is clear, otherwise continue:
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Table 6.5 Data test operations.

Flags
Operation Mnemonic V N Z C Description

Bit Test Non-destructive AND
A bita 0

√ √ • [A]·[M]
B bitb 0

√ √ • [B]·[M]

Compare Non-destructive subtract
with A cmpa

√ √ √ √
[A]−[M]

with B cmpb
√ √ √ √

[B]−[M]

Test for Zero or Minus Non-destructive subtract from zero
memory tst 0

√ √
0 [M]−00

A tsta 0
√ √

0 [A]−00
B tstb 0

√ √
0 [B]−00

Program 6.4 Shifting to find the highest set bit.

; Data is in B, position of highest set bit to be in A
HIGH_BIT: clra ; Zero count

tstb ; Check the state of the data
bne HLOOP ; IF non-zero THEN go to the loop
deca ; ELSE make count FFh (-1)
bra EXIT ; and finished

; WHILE data is not zero, shift right and increment counter
HLOOP: lsrb ; Shift rightmost bit into Carry

beq EXIT ; IF residue is zero THEN finished
inca ; ELSE increment count
bra HLOOP ; and do another shift

EXIT: ... ..... ; Next program segment

ldaa 9000h ; Get the data
anda #00000010b ; Clear all but bit 1
bne FRED ; IF non zero THEN go to FRED

ldaa 9000h ; Get the data again
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anda #00001000b ; Clear all but bit 3
bne JIM ; IF non zero THEN go to JIM

ldaa 9000h ; Get the data yet again!
anda #01000000b ; Clear all but bit 6
beq JILL ; IF zero THEN go to JILL

... ..... ; ELSE continue

Although this code fragment works it is not very efficient, as testing
the data destroys it. The equivalent non-destructive AND test operation
from Table 6.5 are the Bit Test instructions, bita and bitb. Our code
fragment now becomes:

ldaa 9000h ; Get the data
bita #00000010b ; Clear all but bit 1
bne FRED ; IF non zero THEN go to FRED

bita #00001000b ; Clear all but bit 3
bne JIM ; IF non zero THEN go to JIM

bita #01000000b ; Clear all but bit 6
beq JIM ; IF zero THEN go to JILL

... ..... ; ELSE continue

which does the same thing, but with the contents of Accumulator A re-
maining unchanged. Thus more tests can subsequently be carried out
without reloading.

In the more general case it is often necessary to compare the magni-
tude of two numbers. Mathematically this can be done by subtracting the
datum ([M] or a constant) from the contents of the accumulator [A] (see
page 65) and checking the state of the various CCR flags. Which flags are
relevant depend on whether the numbers are to be treated as unsigned
(magnitude only) or signed. Where the actual magnitude of the difference
between the operands is required, then the appropriate Subtract instruc-
tion can be used. However, in most cases it is sufficient to determine the
relative magnitude of the quantities.

Taking the more common magnitude only case first gives:
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Accumulator higher than datum . . . . . . . . . . . . . . . . . . . . No borrow, non-zero
Accumulator equal to datum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Zero
Accumulator lower than datum . . . . . . . . . . . . . . . . . . . . . . . . . Borrow, non-zero

In terms of our MPU, the C flag represents a borrow after subtraction and
the Z flag is set on a zero outcome. This gives:

[A] Higher than [M] : [A]−[M] gives no borrow & non-Zero; C=0, Z=0 (C+ Z=1).
[A] Equal to [M] : [A]−[M] gives Zero; (Z=1).
[A] Lower than [M] : [A]−[M] gives a borrow; (C=1).

Consider as an example a fuel tank with a capacity of 255 liters, with a
sensor indicating the remaining volume of fuel. Assume that the sensor
represents this as a byte that can be accessed from a read-only memory
location called FUEL; see page ?? for how this could be done. We wish to
write a routine that will light an ‘empty’ light if the remaining capacity is
below 20 liters and ring an alarm bell if below 5 liters. This is how it could
be coded:

ALARM: ldaa FUEL ; Read fuel gauge into Accumulator A
tab ; Copy to Acc. B for safekeeping
suba #5 ; FUEL - 5 to compare
bcs BUZZER ; IF Carry set THEN FUEL lower than 5
subb #20 ; FUEL - 20 to compare
bcs EMPTY ; IF FUEL lower than 20 THEN EMPTY lamp

NEXT: ..... .....

After the subtraction the Carry/borrow flag will be set if the contents
of the accumulator (the fuel reading) is lower than the constant being
subtracted (it is being compared with). Other Branches after a subtract of
unsigned numbers, outlined in Table 6.6, are bcc (equivalent to bhs for
Branch if Higher or Same), beq for Branch if EQual and bne for Branch if
Not Equal.

As we are only interested in the relative magnitude of the two quanti-
ties, then using a Subtract instruction is overkill, in that the operand in
the register will be destroyed — replaced by the difference. That is why
a copy of FUEL had to be made into B above, so that the second Subtract
could be executed. The Compare instruction uses the ALU to perform
the subtraction and set the appropriate flag and then ‘throws away’ the
answer, i.e. does not overwrite the datum. Compare can be thought of
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as a non-destructive subtract. Like the Subtract instructions, there are
variants for each accumulator (and indeed for the 16-bit Index register as
well, as shown in Table 6.7). cmpa is used for Accumulator A and cmpb
for Accumulator B. Using cmpa our code fragment becomes:

ALARM: cmpa #5 ; FUEL - 5 to compare
bcs BUZZER ; IF LOwer than 5 THEN sound BUZZER
cmpa #20 ; FUEL - 20 to compare
bcs EMPTY ; IF LOwer than 20 THEN EMPTY lamp

NEXT: ..... .....

Where the operands under the microscope are signed 2’s complement
quantities then the same Subtract or Compare instructions are used. How-
ever, their relative magnitude has to be gauged by ‘looking’ at the V and
Z flags, i.e. checking if the outcome is positive or negative, taking over-
flow into account (see page 10). After a subtraction of the datum from
the accumulator we have:

• If the signed accumulator content is Greater Than the signed datum,
then

– There will be a non-zero positive outcome with no overflow.
ELSE

– There will be an overflow with an apparently negative non-zero
outcome.

This can be expressed as (N⊕V) + Z = 0.

• If the signed accumulator content and signed datum are EQual then
the Z flag will be set.

• If the signed accumulator is Less Than the signed datum, then:

– There will be a negative outcome with no overflow.
ELSE

– There will be an overflow with an apparently positive outcome.

This can be expressed as N⊕V = 1.

This is summarized as:

[A] Greater than [M] : [A]−[M] � non-zero +ve result; (N⊕V·Z = 1 or N⊕V+Z = 0).
[A] Equal to [M] : [A]−[M] � zero; (Z=1).
[A] Less than [M] : [A]−[M] � a negative result; (N⊕V = 1).
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Although this seems rather complicated, all the programmer has to
remember is to use Conditional Branches with the words HIgher (HI) or
LOwer (LO) if the operands are unsigned, and Greater Than (GT) or Less
Than (LT) if signed. Equality (or sameness) does not depend on the num-
ber representation.

As an example consider a commercial glasshouse in which a heating
and ventilation system is to keep the environment at a reasonable tem-
perature. The temperature can be read by the microprocessor as an 8-bit
signed 2’s complement datum as degrees Celsius at 9004h. The algorithm
is:

• IF the temperature is Greater Than +20◦C THEN sound alarm.

• ELSE IF the temperature is Greater Than +16◦C THEN open ventila-
tors.

• ELSE IF the temperature is Greater Than +10◦C THEN turn on heater.

• ELSE IF the temperature is Greater Than +4◦C THEN turn on heater
booster.

• ELSE IF the temperature is Less Than −2◦C THEN sound alarm.

This is shown diagrammatically in the flow diagram of Fig. 6.2.
A possible coding for this task using Subtract instructions is shown

in Program 6.5. Although a working coding, this implementation is in-
efficient in that each comparative subtraction destroys the temperature
previously copied into Accumulator A. This means that the thermometer
will have to be interrogated again and the value (hopefully unchanged)
will have to be recopied into the MPU. The listing of Program 6.6 is an
equivalent coding but this time using the non-destructive cmpa in place
of suba. The length of the more efficient coding is 23 bytes as against
35 bytes for the Subtract version. Notice that in both versions the Branch
instructions bgt (Branch if Greater Than) and blt (Branch if Less Than)
applicable to 2’s complement signed operands are used to implement the
decision skip. This is rather than the bhi (Branch if HIgher than) and
bls (Branch if Less than or Same) instructions which should only be used
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TEMP > +20C?

No

ALARM
Yes

Yes
TEMP > +16C?

No

VENTILATOR

Yes
TEMP > +10C?

No

HEATER

Yes
TEMP > +4C?

No

BOOSTER

Yes
TEMP < -2C?

No

ALARM

Figure 6.2 Glasshouse environment control.
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Program 6.5 Environment control I.

.define TEMP = 9004h

START: ldaa TEMP ; Get temperature
suba #+20 ; Compare with +20C
bgt ALARM ; IF Greater Than THEN sound alarm

ldaa TEMP ; ELSE get temperature again
suba #+16 ; Compare with +16C
bgt VENTILATOR ; IF Greater Than THEN open ventilators

ldaa TEMP ; ELSE get temperature yet again
suba #+10 ; Compare with +10C
bgt HEATER ; IF Greater Than THEN turn on HEATER

ldaa TEMP ; ELSE get temp yet again and again
suba #+4 ; Compare with +4C
bgt BOOSTER ; IF Greater Than THEN boost heater

ldaa TEMP ; ELSE get temp yet again & again...
suba #-2 ; Compare with -2C
blt BOOSTER ; IF Less Than THEN sound alarm

where unsigned data is being compared. This confusion between signed
and unsigned data comparisons is a fruitful area for errors.

Program Counter operations
As shown in Table 6.6 there are 14 Conditional Branches which cause the
offset to be added to the Program Counter if the indicated combination of
flags is true.5 Effectively this causes the program stream to skip forwards
or backwards. There also is a BRanch Always bra which always skips no
matter what the state of the flags are.

In assembly language, the programmer can directly specify this signed
2’s complement byte offset; thus beq .+16 means “Add 16 to the current
state of the PC”. The current state of the PC is actually pointing to the in-
struction op-code after the Branch instruction; see Fig. 3.3(b) on page 53.
The details of this augmentation of the PC are given on page 100 in the
previous chapter, under the heading Relative addressing.

5Although these usually follow a sub, cmp or tst instruction, they can follow any in-
struction that affects the appropriate flag(s)—for example, ldab MEM then beq FRED.



THE INSTRUCTION SET 133

Program 6.6 Environment control II.

.define TEMP = 9004h

START: ldaa TEMP ; Get temperature
cmpa #+20 ; Compare with +20C
bgt ALARM ; IF Greater Than THEN sound alarm

cmpa #+16 ; Compare with +16C
bgt VENTILATOR ; IF Greater Than THEN open ventilators

cmpa #+10 ; Compare with +10C
bgt HEATER ; IF Greater Than THEN turn on HEATER

cmpa #+4 ; Compare with +4C
bgt BOOSTER ; IF Greater Than THEN boost heater

cmpa #-2 ; Compare with -2C
blt BOOSTER ; IF Lower Than THEN sound alarm

Rather than calculating these offsets by hand, the destination instruc-
tion should be labelled. If the program is subsequently altered, when
it is reassembled all offsets will be automatically recalculated — a major
advantage. For example repeating Program 6.3 but not using labels gives:

; 24-bit Data is in 0032:31:30h
; Number of bits set to be in A

clra ; Zero count
ldab #24 ; Shift count

; WHILE data is not zero, shift right and increment counter
lsl 0032h ; Shift rightmost byte left once
rol 0031h ; and the middle byte
rol 0030h ; and the leftmost byte
adca #0 ; Add Carry to bit sum
decb ; Decrement shift count
bne .0F2h ; and repeat 32 times

... ..... ; Next program segment

Whilst this is technically correct it is difficult to detect any errors in the
offset calculation, apart from the effort in calculating the offset (−14d
places from the following instruction) in the first place. Furthermore
if the program is subsequently altered, perhaps by putting in an extra
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Table 6.6 Operations which affect the Program Counter.
Operation Mnemonic Description

Bxx xx is the logical condition tested

Always (True) bra Always affirmed regardless of flags

EQual3,4 beq Z flag set (Zero result)
Not Equal3,4 bne Z flag clear (Non-zero result)

Carry Set bcs1 [Acc] Lower Than (Carry = 1)
Carry Clear bcc2 [Acc] Higher or Same as (Carry = 0)

Lower or Same3 bls [Acc] Lower or Same as (C+Z=1)
Higher Than3 bhi [Acc] Higher Than (C+Z=0)

MInus bmi N flag set (Bit 7 = 1)
PLus bpl N flag clear (Bit 7 = 0)

oVerflow Set bvs V flag set
oVerflow Clear bvc V flag clear

Greater Than4 bgt [Acc] Greater Than (N⊕ V · Z = 1)
Less than or Equal4 ble [Acc] Less than or Equal (N⊕ V · Z = 0)

Greater than or Equal4 bge [Acc] Greater than or Equal (N⊕ V = 1)
Less Than4 blt [Acc] Less Than (N⊕ V = 0)

Jump jmp Absolute unconditional goto

No Operation nop Only increments Program Counter

Note 1: Some assemblers allow the alternative blo3.
Note 2: Some assemblers allow the alternative bhs3.
Note 3 After a Subtract or Compare of unsigned data.
Note 4 After a Subtract or Compare of 2’s complement signed data.

instruction inside the loop, then the offset will have to be recalculated.
Whilst this may seem a trivial task, remember that the average embedded
microprocessor program has over 30,000 lines!

The jmp (JuMP) instruction is a go-to operation as compared to a rel-
ative skip. This can use any appropriate address mode and go directly
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anywhere in the address space. A combination of a Conditional branch
and jmp can be used to simulate a Long branch, as coded in Example 5.3
on page 105, where the skip range is outside the single-byte offset range
of +129 through −126 bytes from the Branch instruction.

The single-byte nop (No OPeration) instruction does nothing, but as a
consequence of its fetch the Program Counter will increment in the nor-
mal way. This ‘useless’ process takes two clock cycles to execute and
nop is often used to create a short delay with no other side effects (see
Program 8.1 on page 174).

Address register instructions
The 6800 MPU has two 16-bit registers accessible to the programmer
which are designed to hold addresses. The function of both the Stack
Pointer and Index registers have been described in Chapter 4. Briefly, the
Index register is designed to hold a pointer address to be used in con-
junction with the Indexed address mode (see page 99). The Stack Pointer
register is used to keep track of an area of memory designated by the
programmer, known as a stack, to temporarily hold data which can be
pushed out to and pulled from this area of memory, as shown in Fig. 6.1.

As can be seen in Table 6.7 it is possible to Increment (inx and ins) and
Decrement (dex and des) either of the registers. Notice that the only flag
affected by these instructions is the Z flag, and thus only the Conditional
instructions beq and bne can be used following these instructions. In a
similar manner the ComPare indeX instruction (cpx ) only correctly affects
the Z flag; although in this case both V and N flags are altered, they only
reflect the subtraction of the high byte of the Index register, IXH, and
should not be used for Conditional branching. Thus the code fragment:

LOOP: inx ; Increment pointer
cpx #1000h ; Compare with the address 1000h
bls LOOP ; IF Less than or the Same repeat loop

is illegal as the Conditional branch instruction bls will not always operate
properly with the cpx instruction. This is because the 6800’s ALU cannot
directly implement 16-bit arithmetic, so operations on 16-bit registers are
executed by first processing the lower byte followed by the high byte. The
logic for setting the flags in this situation only works for the Z flag. Notice
the the C flag is not altered by this instruction either.6

6The 8-bit 6809 MPU has fixed this problem and the full range of Condition branches
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Table 6.7 Address register instructions.
Flags

Operation Mnemonic V N Z C Description

Compare Non-destructive 16-bit subtract
IX cpx 1 2 √ • [IXH:IXL]−[M:M-1]

Decrement 16-bit subtract one with no borrow
IX dex • • √ • [IXH:IXL] <- [IXH:IXL]−1
SP des • • • • [SPH:SPL] <- [SPH:SPL]−1

Increment 16-bit addition of one with no carry
IX inx • • √ • [IXH:IXL] <- [IXH:IXL]+1
SP ins • • • • [SPH:SPL] <- [SPH:SPL]+1

Load Copies two memory bytes to register
to IX ldx 0

√ √ • [IXH:IXL]<-[M:M+1]
to SP lds 0

√ √ • [SPH:SPL]<-[M:M+1]
Store Copies 2-byte register out to memory

from X stx 0
√ √ • [M:M+1]<-[IXH:IXL]

from S sts 0
√ √ • [M:M+1]<-[SPH:SPL]

Transfer Copy between address registers
IX+ 1 -→ SP txs • • • • [SPH:SPL]<-[IXH:IXL]+13

SP− 1 -→ IX tsx • • • • [IXH:IXL]<-[SPH:SPL]−14

Note 1: Only affected if the subtraction of the high IX byte overflows.
Note 2: Only affected if the subtraction of the high IX byte would give b15 = 1.
Note 3: The value of IX less one is transferred.
Note 4: The value of SP plus one is transferred.

The contents of an Address register can be copied into memory using
the stx (STore indeX) and sts (STore Stack pointer) instructions. In a
similar manner data in memory can be copied into either 16-bit register
using the ldx (LoaD indeX) and lds (LoaD Stack pointer) instructions.

Once again, when using these instructions you must remember that
memory is organized as 8-bit bytes, that is an address of a memory datum
locates a byte. In using an address in conjunction with these double-byte
registers a problems arises in that 2-byte data is being referenced. For

can be used after 16-bit register operations.
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[IXH] [IXL]

IX

MPU MPU

IX

M-1 M M+1 M+2 M+3 M-1 M M+2M+1 M+3

(a) stx  M (b) ldx  M

two  cycles two  cycles

Memory Memory

[M] [M+1]

Figure 6.3 16-bit Store and Load to/from memory operations.

example ldx 0030h seems to say “Load the byte datum in memory in
0030h into the 2-byte address register”. What really happens is shown in
Fig. 6.3(a) where the two bytes in memory at 0030h and 0031h are actually
copied although only the address 0030h was specified in the instruction.
As the Data bus is only eight bits wide it actually takes two Read cycles
to bring down down the full 16 bits (actually the high byte at 0030h is
read first followed immediately by the byte datum at 0031h — but this
is invisable to the programmer). Similarily when storing data from an
address register the lower address (that is for the most significant datum
byte) is specified. For example stx 0032h actually copies the contents of
the Index register IXH:IXL into 0032:3h, as shown in Fig. 6.3(b).

Flag instructions
Finally Table 6.8 shows a few instructions that can be used to directly set
or clear the C (sec and clc) and V (sev and clv) flags. It is also possible
to set and clear the I mask bit using sei and cli instructions to inhibit
and permit maskable interrupts (see page ??). All the flags/mask can be
simultaneously primed by copying the byte in Accumulator A into the
Code Condition register by using the (puzzling mnemoniced) tap (Trans-
fer A to ??) instruction. In a similar manner the CCR can be transferred
to Accumulator A for futher examination using tpa.
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Table 6.8 Direct flag operations
Flags

Operation Mnemonic H I V N Z C Description
CLear Carry clc • • • • • 0 [C] <- #0
SEt Carry sec • • • • • 1 [C] <- #1
CLear oVerflow clv • • • • 0 • [V] <- #0
SEt oVerflow sev • • • • 1 • [V] <- #1
CLear Interrupt mask cli • 0 • • • • [I] <- #0
SEt Carry sec • 1 • • • • [I] <- #1
Transfer A to CCR tap A5 A4 A3 A2 A1 A0 [CCR] <- [A]
Transfer CCR to A tpa • • • • • • [A] <- [CCR]

Table 6.9 Direct flag operations.

The shortform instruction set of Table 6.10 gives a summary of the
more commonly used instructions. A full instruction set is laid out in
Appendix B.
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Instruction1 Description Address modes Flags

# InherAbsol Index N Z C

Arithmetic
adda [ea] ADD to A * * *

√√ √
adca [ea] AdD with Carry to A * * *

√√ √
clr [ea] CLeaR memory * * 0 1 0
clra CLeaR A * 0 1 0
dec [ea] DECrement memory * *

√√ •
deca DECrement A *

√√ •
dex DECrement IX * • √ •
inc [ea] INCrement memory * *

√√ •
inca INCrement A *

√√ •
inx INCrement IX * • √ •
suba [ea] SUBtract from A * * *

√√ √
sbca [ea] SuBtract with Carry/borrow from A * * *

√√ √
Movement
ldaa [ea] LoaD (copy) to A from memory * * *

√√ •
ldx [ea] LoaD (copy) to IX from memory * * *

√√ •
staa [ea] STore (copy) from A to memory * *

√√ •
stx [ea] STore (copy) from IX to memory * *

√√ •
Logic

anda [ea] Bitwise AND A with memory * * *
√√ •

com [ea] COMplement (NOT) memory * * • • 1
coma COMplement (NOT) A * • • 1
eora [ea] Bitwise EOR A with memory * * *

√√ •
oraa [ea] Bitwise OR A with memory * * *

√√ •
asl2 [ea] Arithmetic Shift Left memory one place * * 0

√
b7

asla2 Arithmetic Shift Left A one place * 0
√

b7
lsr [ea] Logic Shift Right memory one place * * 0

√
b0

lsra Logic Shift Right A one place * 0
√

b0

Testing

cmpa [ea] CoMPare A with memory * * *
√√ √

cpx [ea] CoMPare IX with memory * * *
√√ •

tst [ea] TeST memory for zero or negative (bit 7 = 1) * *
√√ •

tsta TeST A for zero or negative (bit 7 = 1) * *
√√ •

Branch (see over)

bra BRAnch always • • •
beq Branch if EQual to zero • • •
bne Branch if Not Equal to zero • • •
bcc/bhs Branch if Carry Clear/Higher or Same • • •
bcs/blo Branch if Carry Set/LOwer than • • •
bpl Branch if PLus (bit 7 = 0) • • •
bmi Branch if MInus (bit 7 = 1) • • •
jmp JUmP (goto) directly * * • • •
Subroutine
jsr Jump to SubRoutine * * • • •
rts ReTurn from Subroutine * • • •

* : Available
√

: Flag operates normally
1 : Flag set • : Not affected 1 : Replace a by b for Acc. B
[ea] : Effective address 0 : Flag cleared 2 : Alternatively lsl/lsla
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Conditional Branches, Bxx

beq EQual Z=1 bvc oVerflow Clear V=0
bne Not Equal Z=0 bvs oVerflow Set V=1
bcc Carry Clear C=0 bpl PLus N=0
bcs Carry Set C=1 bmi MInus N=1
bhs Higher or Same C=0 bge Greater or Equal N⊕V=0
bhi HIgher than C+Z=0 blt Less Than N⊕V=1
bls Lower or Same C+Z=1 bgt Greater Than N⊕V·Z=1
bcs LOwer than C=1 ble Less or Equal N⊕V·Z=0

Table 6.10 Shortform 6800 instruction set (continued next page).
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Examples

Example 6.1
The circuit diagram of Fig. 6.4 shows a 7-bit pseudo-random number
generator (PRNG) based on a shift register with an Exclusive-OR gate
feedback. Devise a routine to continually send these 127 binary
random numbers to a port located at 9001h. The routine is to
initialize the number to any non-zero value.

Solution
A suitable task list is:

1.Initialize the number to 01.

2.DO forever.

(a)Shift number left once to align bits 5 & 6.

(b)Bitwise EOR the number and its shifted copy.

(c)Shift the outcome twice left to pop out bit 6 into the C flag, which
will be F6⊕F5.

(d)Shift the original number left once with C becoming the new bit 0.

The listing in Program 6.7 follows the task list fairly closely. The
value of the number is temporarily saved in memory so that it can
be shifted in its accumulator and then Exclusive-ORed as required.
It can be retrieved later and the new bit F5⊕F6 shifted in using the
Rotate Left instruction to form the next random number.

What would happen if the initial value of the random number was
zero?

F0F1F2F3F4F5F6
1D

C1 Sample  rate

Data  in  =  F5 + F6

Figure 6.4 A 7-bit pseudo-random number generator.
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Program 6.7 A 7-bit pseudo-random number generator.

.define PORT = 9001h, MEMORY = 0030h
PRNG: ldab #1 ; Initial value of random number is 01

P_LOOP: stab MEMORY ; Make a copy in memory

aslb ; Shift number to align bits 5 & 6
eorb MEMORY ; Bitwize EOR them
aslb ; Shift twice left to put 5EOR6 in Carry
aslb

ldab MEMORY ; Get back original number from memory
rolb ; Shift left with carry coming in

stab PORT ; and send this new random number out

bra P_LOOP ; and repeat

Example 6.2
A certain electronic game is based on the generation of a random
number stored as a byte in Accumulator A.. This is to drive an array
of seven LEDs designed to mimic the layout of a die (see Fig. ?? on
page ??). As a die (singular for dice) can only represent six different
values it is necessary to convert this byte to a random number in the
range 1–6. Show how this may be coded.

Solution
Mathematically this function may be implemented by dividing the
byte random number by six. The random remainder will then range
from 0–5. This remainder is known as the modulo-6 equivalent of
the original number. Adding one gives the desired range 1–6.7

In Program 6.8 the ÷6 operation is implemented by the repetitive
subtraction of six. The residue is checked against six at the beginning

7In the C language the modulo operator is %, so this function could be expressed as
(N%6)+1.
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Program 6.8 Modulo-6 generation.

; Random number N in Accumulator A on entry
; (Modulo-6)+1 equivalent to be generated into Accumulator B
MOD_6: tab ; Copy N into Accumulator B
MOD_6_LOOP: cmpb #6 ; Is the residue less than six?

bcs FINISHED ; IF underflow (lower than) then finished
subb #6 ; ELSE take away six
bra MOD_6_LOOP ; and go again

FINISHED: addb #1 ; Residue converted to 1--6
... ...... ; Exit with (N%6)+1 in Accumulator B

of each pass through the loop. If this remainder is lower than six (a
borrow/carry is generated by the cmpa subtract) then the process is
finished. The residue is the modulo-6 version of the original datum.

As we have to subtract six anyway, it is more efficient to only use
subb instead of both cmpb and subb. Can you write a more efficent
coding (one instruction less) to implement this function?

Example 6.3
A certain television show has eight contests evenly divided into
Team A and Team B. Each member has a switch, giving logic 1 when
pressed, which may all be read simultaneously by the microprocessor
at memory location 9001h. Team A switches appear on the lower
four bits of the byte.

Write a routine that will:

•Decide when a response to the question has been made — any
switch closed.

•Determine the team identity that has responded, by clearing
Accumulator A for Team A and setting it to any non-zero value
to signify Team B.

•Ascertain which team member pressed his or her switch by
putting the member number 0–3 in Accumulator B.

You may assume that memory in page 0 can be used for temporary
storage of variables.
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Solution
The task list for this program is:

1.WHEN SWITCHES are non zero DO:

2.IF lower nybble of SWITCHES non zero THEN DO:

(a)Set TEAM_ID to zero for Team A

(b)COUNT = 0

(c)DO FOREVER

i.SHIFT SWITCHES once right

ii.BREAK IF Carry = 1

iii.COUNT++

3.ELSE DO:

(a)Set TEAM_ID = non zero for Team B

(b)COUNT = 3

(c)DO FOREVER

i.SHIFT SWITCHES once left

ii.BREAK IF Carry = 1

iii.COUNT--

In essence when the value at 9001h, which we call SWITCHES, is
non zero then one half is blanked out by ANDing with zero. Based on
the state of the remaining nybble we can determine if it was Team A
or Team B. By shifting the switch state right or left (Team A or Team B
respectively) and counting up or down respectively we can find who
pressed the switch. For example if Team A contestant 2 pressed the
switch and the settings have been loaded into Accumulator A:

B = 0 (COUNT)
00000100

A
lsra
�

00000010
A
, C = 0

B = 1
00000010

A
lsra
�

00000001
A
, C = 0

B = 2
00000001

A
lsra
�

00000000
A
, C = 1
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giving the requisite answer of two in Accumulator B.
A possible coding of this list is:

Program 6.9 A television quiz ennunciator.

.define TEAM_ID = 0000h, SWITCHES = 9001h
; Task 1
QUIZ: ldaa SWITCHES ; Keep checking for a switch closure

bne QUIZ

; Task 1A
clr TEAM_ID ; Zero the temp location for team id.
bita #00001111b ; Blank off Team B (Team A data unchanged)
beq TEAM_B ; IF zero THEN must be Team B

; Team A
clrb ; COUNT = 0

A_LOOP: lsra ; Shift switch data once right
bcs FINI ; BREAK IF Carry = 1
incb ; Increment COUNT in B
bra B_LOOP ; and try again

; Task 1B for Team B
TEAM_B: dec TEAM_ID ; Make team id non zero

ldab #3 ; COUNT = 3
B_LOOP: asla ; Shift switch data once left

bcs FINI ; BREAK IF Carry = 1
decb ; Decrement COUNT in B
bra B_LOOP ; and try again

FINI: ldaa TEAM_ID ; Team id. in Accumulator A
... .....

•Is the program biased if more than one panel member presses
his/her switch?

•What problems could arise in practice?
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Self-assessment questions

6.1 Code a program that reads a bank of switches controlling a dish-
washer, which can be read by the MPU at a port located at 9000h
which:

• Continually samples Switch 7 (bit 7, the most-significant bit)
and only moves on when this reads as a 1.

• Goes to a program line ECOMONY if Switch 0 is 0.

• Otherwise continues to the program labelled NORMAL.

6.2 Design a program that will branch to a routine called GREEN (that
turns on a green lamp) if the temperature read at a port at 9000h
in integer 2’s complement form is greater than +2◦C and go to
FLASH_RED if less than −1◦C otherwise continues on to a routine
called AMBER that activates an amber lamp.

6.3 The 6800/2 MPU has no direct way to push and pull the contents
of the Index register onto/off the stack. Later members of the
family, such as the 6809 and 6811 processors have a pshx and pulx
instruction. Show how you might simulate these absent instructions.
Your technique should be such that the contents of the accumulators
should be unchanged following both routines, however, you can use
up to three bytes of memory.

6.4 How could you count the number of set bits in an array of 256 bytes
between 0000h and 00FFh? Make use of two bytes in memory at
0200:1h to hold the bit count (which can be up to 2048).

6.5 Parity is a method of error protection whereby each byte of data has
the most significant bit set in such a way to ensure that the overall
number of bits in the byte is odd or even. Write a routine that will
convert a byte at 0030h to odd 1’s parity. You may assume that the
existing pattern has a 0 in the most significant bit position 7.

You will:

1. Count up the number of bits in this byte (see Program 6.3)
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2. Determine if this number is odd or even. The weight of the least
significant bit is one (20), whilst all other bits are even (eg. 2, 4, 8…).
Thus an odd binary number always has bit 0 = 1.

3. IF even THEN set bit 7 of the number to 1 ELSE leave bit 7 at 0.

6.6 Design a coding that will test read/write memory between 0000h
and 1FFFh. The procedure is to store a test vector, for example
01010101b in the byte under test and then compare it with the
vector. If they are the same then the memory location is considered
to be functioning correctly. Repeat this for all 8 Kbytes. If the check
shows a problem the routine is to immediately exit with the problem
byte in the Index register.

6.7 Repeat the last SAQ, but this time use all numbers from 00000000b
to 11111111b to test each byte. That is each byte is tested 256
times.

6.8 Write a program that will convert a byte located in memory location
0030h called BINARY of value 00h– FFh (0 – 255d) to a 3-digit
BCD equivalent in locations 0100h for the hundred’s digit (called
HUNDS), 0101h for the ten’s digit (called TENS) and 0102h for the
units digit (called UNITS). For example if BINARY is FEh (11111110b)
then the outcome will be 02 hundreds, 05 tens and 04 units; that is
FEh = 255d.

Hint: The easiest way to do this is to keep a tally of how many
times a hundred can be subtracted from the binary number without
underflowing (generating a borrow), then how many tens can be
subtracted from the residue number without underflow. Whatever
is left will be the value of the units.



CHAPTER 7

Assembly language

We have now been writing programs with gay abandon since Chapter 3.
For clarity these listings were written in a human-readable form. Thus,
instructions are represented as a short mnemonic, such as inc; the reg-
isters similarly have mnemonics, such as x; lines have been labelled and
comments attached. Such symbolic representations are only for human
consumption. The MPU knows nothing beyond the binary codes making
up operation codes and address modes, such as shown on page 50.

With the help of the programmer’s manual supplied by the manufac-
turer, it is possible to translate from the human-readable symbolic form
to machine-readable binary. However, it really isn’t practical to do this
for programs of more than a few dozen instructions. As well as being
excruciatingly slow and tedious, it is error-prone and difficult to maintain
whenever there are changes to be made.

Computers are good at doing boring things quickly and accurately;
and translating from symbolic to machine code definitely falls into this
category. Here we will briefly look at the various software packages that
aid in this translation process.

After reading this chapter you will:

• Know what assembly-level language is and how it relates to machine
code.

• Appreciate the advantages of a symbolic representation over machine-
readable code.

• Understand the function of the assembler.

• Appreciate the process involved in translating and locating an assembly-
level language program to absolute machine code.

148
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• Understand the structure of a machine-code file.

• Understand the role of a loader.

The essence of the conversion process is shown in Fig. 7.1. Here the
program is prepared by the tame human in symbolic form, digested by
the computer and output in machine-readable form. Of course this simple
statement belies a rather complex process, and we want to examine this
in just enough detail to help you in writing your programs.

ldaa  NUM1
adda  #101d
staa  NUM2
inc   NUM2
rts

Translate 101101100001000000101100
1000101101100101
101101110001000000101101
011111000001000000101101
00111001

Figure 7.1 Conversion from assembly-level source code to machine code.

The various translator and utility computer packages are written and
sold by many software companies, and thus the actual details and proce-
dures differ somewhat between the various commercial products. Here
we will utilize Real Time Systems products1 for illustrative purposes. Al-
though most products are broadly similar, you will have to consult the
documentation of the particular packages you are using for specific de-
tails.

Using the computer to aid in translating code from more user-friendly
forms (known as source code) to binary machine code (known as object
code) and loading this into memory began in the late 1940s for mainframe
computers. At the very least it permitted the use of higher-order number
bases, such as hexadecimal.2 In this base the code fragment of Fig. 7.1
becomes:

B6102C
8B65
B7102D
7C102D
39

1Written by and available from RTS, M & G House, Head Road, Douglas, Isle of Man,
British Isles. Details on http://mannet.mcb.net/rts/xa8.html.

2Actually base-8 (octal) was the popular choice for several decades.
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A hexadecimal loader will translate this into binary and put the code
in designated memory locations. This loader might be the software in
your EPROM programmer or part of the operating system of the target
computer.3 Hexadecimal coding has little to commend it, except that the
number of keystrokes is reduced — but there are more keys — and it is
slightly easier to spot certain types of errors.

As a minimum, a symbolic translator, or assembler,4 is required for
serious programming. This allows the programmer to use mnemonics for
the instructions and internal registers, with names for constants, variables
and addresses. The symbolic language used in the source code is known
as assembly language. Unlike high-level languages, such as C or PASCAL,
assembly language has a one-to-one relationship with the generated ma-
chine code, i.e. one line of source code produces one instruction. As an
example, Program 7.1 shows the source code of a module that will com-
pute the average of an array of 24 data bytes (perhaps daily temperature
sampled hourly) located in memory from 1000h upwards. The program
code itself begins at C100h and data memory from 0000h upwards is re-
served for the 24-byte array and for a 1-byte location holding temporarily
the average.

Giving names to addresses and constants is especially valuable for
longer programs, which may easily exceed 10,000 lines. Together with the
use of comments, this makes code easier to debug, develop and maintain.
Thus, if we wished to change the size of the array to 144 (say, sampling
the temperature every 10 minutes), then we need only alter the first line
to:

.define NUMBER = 144

or even, as most assemblers can do simple constant arithmetic (see also
line 9):

.define NUMBER = 24*6

and then retranslate to machine code. In a program with, say, 50 refer-
ences to the constant NUMBER, the alternative of altering all these con-
stants from 24 to 144 is laborious and error-prone.

3For example, MS-DOS or the monitor ROM in your trainer board.
4The name is very old; it refers to the task of translating and assembling together the

various modules making up a program.
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Program 7.1 Absolute assembly-level source code for our averaging module.

.define NUMBER = 24 ; 1: Number of elements n=24

.org 0C100h ; 2: Prog text begins @ C100h
AVERAGE: ldx #ARRAY ; 3: Point to start of array

clra ; 4: Zero the double-byte sum total
clrb ; 5: with the 2 accums. holding sum

LOOP: ldab 0,x ; 6: Add array byte element n
adcb #0 ; 7: Add carry into top byte

inx ; 8: Increment pointer
cpx #(ARRAY+NUMBER); 9: Over the top yet?
bne LOOP ; 10: IF not THEN again

; 11: Now divide by 24 by subtraction

clr AV ; 12: Zero the average byte
DIV_LOOP:subb #24 ; 13: Take away 24 from lower byte

sbca #0 ; 14: & any borrow from the upper byte
bcs EXIT ; 15: IF borrow produced then finished
inc AV ; 16: ELSE note a successful subtraction
bra DIV_LOOP ; 17: and go again
ldaa AV ; 18: Get average into Acc. A

EXIT: rts ; 19: and return to caller

.org 0h ; 20: Data area
ARRAY: .byte [NUMBER] ; 21: Reserve 24 data bytes for array
AV: .byte [1] ; 22: and one byte for the average

Of course symbolic translators demand more of the computer running
them than simple hexadecimal loaders, especially in the area of memory
and backup store. Because of this, their use in small MPU-based projects
was limited until the late 1970s, when powerful personal computers ap-
peared. Prior to this, either mainframe and minicomputers or special-
purpose MPU development systems were required. Such solutions were
inevitably expensive.

Translation involves two tasks:

• Conversion of the various instruction mnemonics and labels to their
machine-code equivalent.
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Figure 7.2 Assembly-level code translation.
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• The location of the instructions and data in the appropriate memory
locations.

It is the second of these that is perhaps more difficult to understand.
Program 7.1 was designed to be processed by an absolute assembler.

Here the programmer uses embedded directives (in this assembler dis-
tinguished by commands with a leading period) to tell the assembler to
place the code in specified memory addresses. The use of the directive
.org (for “ORiGin”) means that the programmer needs to know where
everything is to be placed. This absolute assembler process is shown in
Fig. 7.2(a).

Absolute assembly is adequate where a program comprises a single
self-contained file; which is the case in this text. However, real projects,
often consisting of more than 10,000 lines of code, require team work.
With many modules5 being written by different people, perhaps also com-
ing in from outside sources and commercial libraries, some means must
be found to link the appropriate modules together to give the one exe-
cutable machine-code file. For example, you may have to call up one of
the modules that Fred has written some time ago. You will not know ex-
actly where in memory this module will reside until the project has been
completed. What can you do? Well a module should have its entry point
labelled; say, FRED: in this case. Then you should be able to jump to FRED
without knowing exactly what address this label represents.

The process used to facilitate this is shown in Fig. 7.2(b). Central to
this modular tie-up is the linker program which satisfies such external
cross-references between the modules. Each module’s source-code file
needs to have been translated into relocatable object code prior to the
linkage. “Relocatable” means that its final location and various addresses
of external labels have yet to be determined. This translation is done by
a relocatable assembler. Unlike absolute assembly, it is the linker that
determines where the machine code is to be located in memory, not the
programmer.

In some products, the output of the linker may need some massaging
to give the absolute machine-code file format that the loader program un-
derstands. The term “absolute” simply means that the machine-readable
code is in its final form, and contains its fixed locations in memory.

5We will discuss modules in more detail in the next chapter.
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In this book we will use an absolute assembler to translate source code
to absolute machine code. As the 6800 family is a rather simple processor,
this approach is adequate for the majority of projects where a MPU of
this capacity is used. To clarify the process we will take a single module
through from the creation of its source file to the final absolute machine-
code file.

Editing
First the source file must be created using any text editor. Most operating
systems come with a simple text editor; for example, edit for MS-DOS and
notepad for Microsoft’s Windows 95/NT. Third-party products are also
available. A text editor differs from a wordprocessor in that no embedded
“funny” codes are inserted, giving formatting and other information. For
instance, if you want a new line then you hit the <RET> key; the text editor
will not wrap around for you. However, most wordprocessors have a
text mode and can be used to create program source files.6 Traditionally
assembly-level source files have an extension of .s or .src. The source
file we will use as our model is given in Program 7.1.

The format of a line of source code in the assembler used in this text
looks like:

LOOP:               ; Point IX to bottom of array

Label (optional) Comment (optional)

Instruction mnemonic Operand

ldx  #ARRAY

All lines, with the exception of comment-only lines, must contain an in-
struction (either executable by the MPU or an assembler directive) and any
relevant operand or operands. If a line is labelled, then the label is delin-
eated by a following colon.7 A line label names the address of the first
following executable instruction. This name must not start with a number
and should be no more than 32 alphanumeric characters. The optional
comment is delineated by a semicolon,8 and whole-line comments are

6For example, programs for this book were created using Wordstar 2000 in its non-
document format.

7With assemblers that do not use a colon as a delimiter, the first character in an unla-
belled line has to be a space.

8Many assemblers use a *.
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permitted (see line 11 of Program 7.1. Comments are ignored by the as-
sembler, and are there solely for human-readable documentation. Notes
should be copious and should explain what the program is doing, and not
simply repeat the instruction. For example:

clra ; Clear A

is a waste of energy:

clra ; Zero the bit count

is rather more worthwhile. Not, or minimally, commenting source code
is a frequent failing, not confined to students. A poorly documented pro-
gram is difficult to debug and subsequently to alter or extend. The latter
is sometimes known as program maintenance.

Assembling
If there are no syntax errors, then the assembler will translate your source
code into absolute object code, which is basically machine code with in-
formation concerning the location in memory it is to be placed. Syntax
errors include such things as referring to labels that don’t exist or instruc-
tions that are not recognized. The output of the assembler will include
an error file giving any such errors. If there are no syntax errors, a listing
file, symbol file and machine-code file are generated.

Listing
The listing file of Table 7.1 reproduces the original source code together
with the location in memory of each instruction and its code, all in hex-
adecimal. The listing file has only documentation value and is not exe-
cutable by the processor.

Symbols
The symbol file shown in Table 7.2 gives a list of symbols together with
their equivalent address. In this example there are six labels and one
assignment of the value 24d (18h) to the label NUMBER, but in a large
program there may be several hundred. Knowing the address to which a
label refers and constant definations is useful in setting up breakpoints
when debugging programs.

Absolute Code
The conclusive outcome of the translation process is the machine-code
file. As can be seen in Table 7.3, such files essentially consist of lines of
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1 .processor m6800
2 .define NUMBER = 24 ; 1: Number of elements n=24
3 .org 0C100h ; 2: Prog text begins @ C100h
4 C100 CE0000 AVERAGE: ldx #ARRAY ; 3: Point to start of array
5 C103 4F clra ; 4: Zero the double-byte sum total
6 C104 5F clrb ; 5: with the 2 accums. holding sum
7 C105 E600 LOOP: ldab 0,x ; 6: Add array byte element n
8 C107 C900 adcb #0 ; 7: Add carry into top byte
9
10 C109 08 inx ; 8: Increment pointer
11 C10A 8C0018 cpx #(ARRAY+NUMBER); 9: Over the top yet?
12 C10D 26F6 bne LOOP ; 10: IF not THEN again
13 ; 11: Now divide by 24 by subtraction
14
15 C10F 7F0018 clr AV ; 12: Zero the average byte
16 C112 C018 DIV_LOOP:subb #24 ; 13: Take away 24 from lower byte
17 C114 8200 sbca #0 ; 14: & any borrow from the upper byte
18 C116 2507 bcs EXIT ; 15: IF borrow produced then finished
19 C118 7C0018 inc AV ; 16: ELSE note a successful subtraction
20 C11B 20F5 bra DIV_LOOP ; 17: and go again
21 C11D 9618 ldaa AV ; 18: Get average into Acc. A
22 C11F 39 EXIT: rts ; 19: and return to caller
23
24 .org 0h ; 20: Data area
25 0000 ARRAY: .byte [NUMBER]; 21: Reserve 24 data bytes for array
26 0018 AV: .byte [1] ; 22: and one byte for the average
27 .end

Table 7.1 The listing file average.ls.

C112 DIV_LOOP
0018 AV
0018 NUMBER
C100 AVERAGE
C11F EXIT
C105 LOOP
0000 ARRAY

Table 7.2 The symbol file average.sym.

hexadecimal digits representing the binary machine code, each preceded
by the address of the first byte of the line. This file is ready to be loaded
into memory, and subsequently run.



ASSEMBLY LANGUAGE 157

S123C100CE00004F5FE600C900088C001826F67F0018C018820025077C001820F59618397B
S1030000FC
S9

Table 7.3 The absolute S2-S8 machine-code file average.hex.

In the MPU world there are many different formats in common use. Al-
though most of these de facto standards are manufacturer-specific, in the
main they can be used for any brand of MPU. The format of the machine-
code file shown here is known as Motorola S1-S9. Let us look at the first
line, or record, which contains the code for the instructions in the pro-
gram average.s in more detail:

S1 23 C100                                                                  7B

Start of data record marker
Address of first data byte

Number of bytes following marker

Machine code

Checksum

CE00004F5FE600C900088C001826F67F0018C018820025077C001820F5961839

The loader recognizes that a code record follows when the characters S1
are received. The characters S9 signify the end-of-file line. Code records
begin with the tally in hexadecimal of all characters after S1, followed by
the four-digit hexadecimal address of the first code byte. The core of the
record is the machine code, with typically up to 32 bytes in each line. The
final byte is known as a checksum. The checksum is calculated so that
a total count of all record bytes, excluding the record start characters,
will always give FFh (−1). This is used by the loader program to detect
download errors.

S1-S9 files are suitable for processors with addresses that can be rep-
resented as a 16-bit code (four hexadecimal digits), such as the 6800 MPU.
68000 MPUs have 24-bit Address buses, and need six hexadecimal digit
representations. 68020 and higher family members have 32-bit Address
buses, and need eight hexadecimal representations. The S2-S8 Motorola
format is similar to S1-S9 but with a six-digit address field. In a similar
manner, S3-S7 format files support processors with an eight-digit address.

An assembler will be very particular that the syntax of the source code
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is correct. If there are syntax errors9 then an error file will be generated.
For example, if line 6 of Program 7.1 is mistakenly entered as:

A_LOOP: ldb 0,y ; 6: Add array byte element n

then the error file following is generated:

x6800 (1):
a:average.s 7: unknown op-code ldb
a:average.s 7: ldb not defined in file or include
a:average.s 12: LOOP not defined in file or include
a:average.s 7: y not defined in file or include
a:average.s: 4 errors detected

Table 7.4 The error file average.er.

The unknown op-code ldb has been correctly picked up and also the at-
tempt in line 10 to Branch to a non-existent line. It often happens that
one syntax error causes a number of spurious alarms, as in this case. For
example the assembler tried to find a label ldb elsewhere in the file as an
alternative to an instruction mnemonic. Thus two errors were registered
for the one syntax error.

Finally, we summarize some general information specific to this as-
sembler as an aid to reading programs in the rest of the book:

• Number representation.

– Hexadecimal: Denoted by a following h, e.g. 41h. Some assemblers
use a $ prefix, e.g. $41.

– Binary: Denoted by a following b, e.g. 01000001b. Some assem-
blers use a % prefix, e.g. %01000001.

– Decimal: The default, but optionally followed by d, e.g. 65d.

– Character: Denoted by surrounding single quotes, e.g. ’a’. Some
assemblers use only a leading single quote, e.g. ’a.

9If the assembler announces that there are no errors then there is a tendency to think
that the program will work. Unfortunately a lack of syntax errors in no way guarantees
that the program will do anything of the sort!
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• Label arithmetic.

– Addition: +, e.g. LOOP+6.

– Subtraction: -, e.g. LOOP-6.

– Multiplication: *, e.g. NUM*6.

– Division: /, e.g. NUM/6.

• Directives

– .define: Associates a value with a symbol, e.g. .define NUM=3039.
Some assemblers use the equate directive, e.g. NUM equ 3039.

– .byte, .word, .double: Allocate, and optionally initialize, stor-
age for one, two or four byte-sized objects respectively. For ex-
ample, .byte 1,2,4,9,25 reserves five bytes with load-time vari-
ables as shown. The directives dc (Define Constant) and ds (Define
Storage) are used by some assemblers together with a size exten-
sion, e.g. ds.w 10 to reserve ten words.

– .org: Places the following code in memory starting from the spec-
ified address. Continues until a new .org is detected.

Examples

Example 7.1
Show how you could initialize a table of powers of 10 from 100 (1) to
104 (10,000) in program memory from C200h upwards. Each datum
is to be stored as a word.

Solution

The table is shown in the source file of Program 7.2.

Program 7.2 Table of powers of ten.

POWER: .org 0C200h ; Table starts at C200h
.word 1,10,100,1000,10000
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The resulting listing file is shown in Program 7.3. Here the
.list +.text directive expands the listing file to show each data
element of the table in memory. Normally only the first element of
each table line is shown, as in Program 7.5. In large tables expansion
would lead to overlong listings.

Program 7.3 The listing file output for the powers of ten array.

1 .list +.text
2 POWER: .org 0C200h ; Table starts at C200h
3 C200 0001 .word 1,10,100,1000,10000

000A
0064
03E8
2710

Notice that a decimal base was used in the source file but the
assembler has translated this into hexadecimal notation to reflect
the natural binary storage in memory. The programmer can use
the number base that is most convenient and understandable in
the source file, typically binary or decimal, and the assembler will
automatically translate as necessary.

Example 7.2
Figure 7.3 shows a typical electrocardiogram (ECG) trace that is to be
used as a reference for a subsequent analysis process. Show how you
would use the assembler to load in a 160 point byte-data array into
memory, located starting at 1000h. This will be used by the analysis
software to indicate that the process can be terminated.
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Figure 7.3 A model ECG waveform.

Solution

The solution to the problem is shown in Program 7.4. Here the
directive .byte is used to specify that the following comma separated
list of data bytes are to be placed in memory in sequence. This can
be seen more clearly in the listing file of Table 7.5. A program to
extract any byte from this table at random is given in Program 5.2 on
page 101.
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Program 7.4 Source code for the ECG data table.

; 160 magnitude samples of an ecg signal coded as bytes
.org 1000h ; Data memory
ARRAY: .byte 30,30,30,30,32,35,38,40
.byte 43,44,44,44,42,41,39,37,35
.byte 34,32,31,31,30,30,31,31
.byte 31,31,31,32,32,32,33,33
.byte 33,33,33,33,33,33,33,33
.byte 36,41,50,63,81,102,121,133
.byte 135,126,107,83,57,35,19,7
.byte 2,2,7,13,20,25,29,30
.byte 31,32,31,31,31,31,30,30
.byte 30,30,30,30,30,30,30,30
.byte 30,30,31,31,32,32,33,33
.byte 34,34,35,36,37,38,38,39
.byte 40,40,41,41,42,42,42,43
.byte 44,46,48,50,52,54,57,59
.byte 61,64,67,69,72,74,77,79
.byte 82,84,85,86,87,87,88,88
.byte 87,87,86,86,84,82,80,77
.byte 73,70,66,63,59,56,53,50
.byte 47,44,42,40,38,37,35,33
.byte 32,31,31,30,30,30,30

Example 7.3
Write a program in conjunction with the above table to scan the data
array and determine the maximum (ECG peak) value.

Solution
Program 7.5 uses the Index register to move across the array from
its initial value of ARRAY until 160 passes through the loop. Accumu-
lator B, initially cleared, is used the hold the maximum value. Each
array byte is compared with the contents of B and if it is higher (a
Carry/borrow is generated) then that array value becomes the new
maximum value. In this case the outcome will be 87h or 135d. I have
terminated the program in line 13 by a ReTurn from Subroutine (rts)
instruction, thus turning the program into a subroutine.. Details
relating to subroutines are the subject of the next chapter.
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Program 7.5 The listing file output for the determination of the peak of the ECG waveform.

1 .processor m6800
2 .org 0C100h ; Program starts at C100h
3 C100 CE1000 ECG_MAX: ldx #ARRAY ; Point to the first table element
4 C103 5F clrb ; Maximum value zero
5
6 C104 E100 ECG_LOOP: cmpb 0,x ; Maximum - DATA[N]
7 C106 2402 bcc ECG_NEXT ; IF Max Higher/Same THEN no update
8 C108 E600 ldab 0,x ; ELSE update maximum value
9
10 C10A 08 ECG_NEXT: inx ; Point to the next array element
11 C10B 8C10A0 cpx #ARRAY+160 ; Check to see if over the top?
12 C10E 26F4 bne ECG_LOOP ; IF not THEN go again
13 C110 39 rts ; End of program
14
15 .org 1000h ; Data memory
16
17 1000 1E ARRAY: .byte 30,30,30,30,32,35,38,40
18 1008 2B .byte 43,44,44,44,42,41,39,37,35
19 1011 22 .byte 34,32,31,31,30,30,31,31
20 1019 1F .byte 31,31,31,32,32,32,33,33
21 1021 21 .byte 33,33,33,33,33,33,33,33
22 1029 24 .byte 36,41,50,63,81,102,121,133
23 1031 87 .byte 135,126,107,83,57,35,19,7
24 1039 02 .byte 2,2,7,13,20,25,29,30
25 1041 1F .byte 31,32,31,31,31,31,30,30
26 1049 1E .byte 30,30,30,30,30,30,30,30
27 1051 1E .byte 30,30,31,31,32,32,33,33
28 1059 22 .byte 34,34,35,36,37,38,38,39
29 1061 28 .byte 40,40,41,41,42,42,42,43
30 1069 2C .byte 44,46,48,50,52,54,57,59
31 1071 3D .byte 61,64,67,69,72,74,77,79
32 1079 52 .byte 82,84,85,86,87,87,88,88
33 1081 57 .byte 87,87,86,86,84,82,80,77
34 1089 49 .byte 73,70,66,63,59,56,53,50
35 1091 2F .byte 47,44,42,40,38,37,35,33
36 1099 20 .byte 32,31,31,30,30,30,30
37 .end

Example 7.4
Repeat Example 7.3 but this time calculating the average value. This
average byte is to be in Accumulator B and two memory locations at
0000:1h can be used to hold the double-byte total sum of all data
bytes. The average is 2Eh or 46d.
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Program 7.6 Determining the average value for the ECG data array.

.processor m6800

.org 0C100h ; Program starts at C100h
ECG_MAX: ldx #ARRAY ; Point to the first element of the table

clr SUM ; Zero the grand total
clr SUM+1

ECG_LOOP: ldaa 0,x ; Get DATA[N]
adda SUM+1 ; Add it to the LSB of the sum
staa SUM+1
ldaa SUM ; Get the MSB of the sum total
adca #0 ; Add the previous carry to it
staa SUM
inx ; Point to the next array element
cpx #ARRAY+160 ; Check to see if over the top?
bne ECG_LOOP ; IF not THEN go again

; Now divide by repetitive subtraction of 160 to get average
clrb ; Average value zeroed

AV_LOOP: ldaa SUM+1 ; Get LSB of sum
suba #160 ; Take away 160
staa SUM+1
ldaa SUM ; Get MSB of sum
sbca #0 ; Subtract the Carry/borrow from it
staa SUM
bcs FINISHED ; Finish if produces a Carry/borrow
incb ; ELSE record a successful subtraction
bra AV_LOOP ; and go do another one

FINISHED: rts ; End of program
; *****************************************************************

.org 1000h ; Data memory
ARRAY:.byte 30,30,30,30,32,35,38,40

.byte 43,44,44,44,42,41,39,37,35

.byte 34,32,31,31,30,30,31,31

.byte 31,31,31,32,32,32,33,33

.byte 33,33,33,33,33,33,33,33

.byte 36,41,50,63,81,102,121,133

.byte 135,126,107,83,57,35,19,7

.byte 2,2,7,13,20,25,29,30

.byte 31,32,31,31,31,31,30,30

.byte 30,30,30,30,30,30,30,30

.byte 30,30,31,31,32,32,33,33

.byte 34,34,35,36,37,38,38,39

.byte 40,40,41,41,42,42,42,43

.byte 44,46,48,50,52,54,57,59

.byte 61,64,67,69,72,74,77,79

.byte 82,84,85,86,87,87,88,88

.byte 87,87,86,86,84,82,80,77

.byte 73,70,66,63,59,56,53,50

.byte 47,44,42,40,38,37,35,33

.byte 32,31,31,30,30,30,30
SUM: .byte [2] ; Reserve two bytes for the sum

.end
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Solution
The coding in Program 7.6 is similar to that of Program 7.5 but this
time the grand total of the 160 data bytes are summed. Once the
array has been walked through the average is computed by dividing
by 160. This is accomplished by subtracting 160 from the double-byte
sum and incrementing the count until an underflow (Carry/borrow)
occurs. This count is the quotient. See Program 6.1 on page 114.

Self-assessment questions

7.1 Repeat the program of Example 7.1 but with the assembler/linker
that you are using for your course. Try printing out the various
output files. Note the effect of deliberate syntax errors.

7.2 In Examples 7.3 and 7.4 the length of the data array was known in
advance to be 160 bytes. Can you think of other ways in which an
a priori knowledge could be avoided?

7.3 Repeat Example 7.3 but this time determining the minimum.

7.4 Write a program located at C000h using the table of powers of ten
that will convert a 2-byte natural binary number in 0030:1h to a
string of BCD digits. Do this by:

1. Subtract 10,000 repetitively from the binary number incrementing the
TEN_THOU memory location until underflow.

2. Restore the one 10,000 subtraction too many and then subtract 1000
repetitively from the binary number incrementing the THOU memory
location until underflow.

3. Restore the one 1000 subtraction too many and then subtract 100
repetitively from the binary number incrementing the HUNDS memory
location until underflow.

4. Restore the one 100 subtraction too many and then subtract 10
repetitively from the binary number incrementing the TENS memory
location until underflow.
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5. Restore the one 10 subtraction too many. The remainder is the units
BCD digit.

Reserve five bytes in data memory for this BCD array, with the
ten-thousand digit in 0000h, thousand digit in 0001h etc.



CHAPTER 8

Subroutines

Good software should be configured as a set of interacting modules rather
than one large program working straight through from beginning to end.
There are many advantages to modular programming, which is almost
mandatory when code lengths exceed a few hundred lines or when a
project is being developed by a team.

In the last chapter we referred to the need to link modules together in
order to build up large programs. What form should should such mod-
ules take? In order to answer this question we will look at the use of
program structures designed to facilitate this modular approach and the
instructions associated with it.

After completing this chapter you will:

• Appreciate the need for modular programming.

• Have an understanding of the structure of a stack and its use in the
call–return subroutine mechanism.

• Understand the terms nested and recursive subroutine.

• Know how to use the Push and Pull instructions to move data on to and
out of the stack.

• Understand how parameters can be passed to a subroutine, by copy or
reference, and altered or returned to the caller.

• Be able to write a subroutine having a minimal impact on its environ-
ment.

Take a look at the inside of your personal computer. It will probably
look something like the photograph in Fig. 8.1, with a motherboard host-
ing the MPU, assorted memory and other support circuitry, and a variable
number of expansion sockets. Into this will be plugged a disk controller

167
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card and a video card. There may be others, such as a soundboard or
modem. Each of these plug-in cards has a distinct and separate logical
task and they interact via the services supplied by the main board — the
motherboard.

There are many advantages to this modular construction.

• Flexibility; that is it is relatively easy to upgrade or reconfigure by
adding or replacing plug-in cards.

• Can reuse from previous systems.
• Can buy in standard boards or design specialist boards in-house.
• Easy to maintain.

Of course there are a few disadvantages. A fully integrated mother-
board is smaller and potentially cheaper than an equivalent mother/dau-
ghterboard configuration. It is also likely to be more reliable, as input

!!! Insert photograph 8.1 here !!!

Figure 8.1 Modular hardware implementing a PC.
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and output signals do not have to traverse sockets/plugs. However, when
they do occur, faults are often more difficult to track down and rectify.

Modular programming uses the same principle to construct “software
circuits”, i.e. programs. A formal definition of modular programming1 is:

An approach to programming in which separate logical tasks are
programmed separately and joined later.

Thus to write a program in a modular fashion we need to decompose the
specification into a number of stand-alone routines, each implementing a
well-defined task. Such a module should be relatively short, be well doc-
umented and easy for a human, not necessarily the original programmer,
to understand.

The advantages of a modular program are similar to those for modular
hardware, but even more compelling:

• Each module can be tested, debugged and maintained on a stand-alone
basis. This makes for overall reliability.

• Can be reused from previous projects or bought in from outside.
• Easier to update by changing modules.

Deciding how to segment a program into individual stand-alone tasks
is where the real expertise lies. The actual coding of such tasks as sub-
programs is no different than the examples we have given in previous
chapters, such as that shown in Program 7.1 on page 151. There are a few
additional instructions associated with such sub-programs, and these are
listed in Table 8.1. We will look at these and some useful techniques in
constructing software in the remainder of the chapter.

Program modules at assembly level are universally known as subrou-
tines, as they are in some high-level languages such as FORTRAN and
BASIC.2 Subroutines are the analog of hardware plug-in cards.

Consider the situation where a 1 second delay task is to be imple-
mented. This may be needed to alert an aircraft pilot to look at the control
panel warning lights for various scenarios (such as low fuel or overheat-
ing) by sounding a buzzer for a short time. In a modular program, this

1From Chambers Science and Technology Dictionary, Cambridge University Press, 1988.
2Other high-level languages use the terms function (C and Pascal) or procedure (Pascal).
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Operation Mnemonic Description

Call Transfer to subroutine
Jump to subroutine jsr ea Push PC on to stack, PC <- <ea>
Branch to subroutine bsr offset Push PC on to stack, PC <- PC+sex|offset

Return Transfer back to caller
from subroutine rts Pull original PC back from Stack

Table 8.1 Subroutine instructions.

delay would be implemented by coding a 1 s subroutine which would be
called by the main program as necessary. This is represented diagram-
matically in Fig. 8.2.

Program jsr More program jsr Even more program

Main flow

One second delay

Subroutine rts

Figure 8.2 Subroutine calling.

In essence, calling up a subroutine involves nothing more than placing
the address of the first instruction in the Program Counter (PC), that is
doing a jump. Thus, if our delay subroutine were located at C100h, then
jmp C100h would seem to do the trick. Of course, as we noted in the last
chapter, the programmer should label the entry point, and assuming this
has been done, as in Program 8.1, then we have jmp DELAY_1_S.

The problem really is how to get back again! Somehow the MPU has to
remember from where in the caller program the subroutine was entered
so that it can return to the next instruction in the caller sequence. This
can be seen in the diagram, where the jumping-off point can be from
anywhere in the main program, or indeed from another subroutine — the
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latter process is called nesting; see Fig. 8.4.

One possibility is to place this address in a designated Address register
or memory location prior to jumping off. This can then be moved back
into the PC at the end of the subroutine as the return mechanism. This
approach breaks down whenever one subroutine wishes to call another.
Then the secondary subroutine will overwrite the return address of the
first, and the main program can never be regained. To get around this
problem, more than one register or memory location could be used to
hold a stack of return addresses. This last-in first-out stack structure is
shown in Fig. 8.3(a).

Consider an area of memory set aside by the programmer to store
subroutine return addresses. This is called the stack. There is nothing
special about this RAM except that the programmer must ensure that
nothing else is likely to overwrite these memory locations. The address
register called the Stack Pointer (SP) is used to point to the top of this

stack

AFFFh
SP

hB000

AFFF

AFFE

AFFD

AFFC

AFFB

h

h

h

h

h

TOC

(a) Before

stack

(b) Calling

SP
AFFDh

(jsr DELAY_1_S)

Caller’s address

PC

DELAY_1_S

MPU

(rts)(c) Returning

SP
hAFFF

stack

PC

MPU

Caller’s address

Low  byte
Caller’s address

High  byte

Caller’s address
Low  byte

Caller’s address
High  byte

Figure 8.3 Using a stack in memory to store return addresses.
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reserved area. In the diagram I have arbitrarily allocated RAM from AFFFh
downwards as the stack. Thus the instruction:

lds #0AFFFh,a7 ; Point to top of stack

that is LoaD Stack pointer with the constant address AFFFh. will be placed
somewhere near the beginning of the main program.

With the stack set up as shown in Fig. 8.3(a) the subroutine can be
called using the special Jump instruction jsr (Jump to SubRoutine).3 This
instruction automatically moves the Stack Pointer down and then copies
the two-byte address of the next instruction in the caller program (that
is the contents of the Program Counter) into the stack. This process is
called pushing. Control is transferred to the subroutine in the same way
as an ordinary jmp, that is by copying the destination address into the PC.
As addresses are two bytes long, two locations in the stack RAM are used
for this storage, and SP will decrement by 2 during this push.

At the end of the subroutine the last instruction should be rts (ReTurn
from Subroutine). This reverses the push action of jsr and pulls the
return address back from the stack into the PC. The Stack Pointer is moved
back up to the previous position automatically.

The beauty of the stack mechanism is its handling of nested subrou-
tines. Consider the situation in Fig. 8.4 where the main program calls
the first-level subroutine SR1 which in turn calls the second-level sub-
routine SR2. In order eventually to get back to the main program, the
outward progression sequence must be exactly matched by the inward
path. This pattern is matched by the last-in first-out (LIFO) structure of
the stack mechanism, which can handle any arbitrary nesting sequence to
any depth (within reason) automatically. It can even handle the (painful)
situation where a subroutine calls itself! Such a subroutine is known as
recursive. As we shall see in the next chapter, the stack mechanism is
also used to handle interrupts. The technique is so useful that virtually
all MPUs support subroutines in this manner.4 Note that for clarity I have
shown the stack organized as a word store, with each cell holding two
bytes.

3bsr (Branch to SubRoutine) can be used if the subroutine is no more than ±128 bytes
away.

4Some decrement the SP before pushing.
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SR2

SR1

Main program

(a) Two-deep nesting

SP

stack
SR1

(b) jsr SR1

SR1

stack

(c) jsr SR2

SP

SR1

stack

(d) rts

SP

stack

(e) rts

SP
SR2 SR2 SR2

SR1

Figure 8.4 Nested subroutines.

If you are confused, then think of the stack mechanism as your diary,
with the Stack Pointer as the bookmark. Every time you wish to use your
diary to write down information, open it at the bookmark, which is set at
the first blank page after your last entry, write down your entry (the return
address) and close it with the bookmark advanced to the next clean page.
Push data like this as many times as is necessary. Any time you wish
to recall the entry, open the diary at the bookmark, move it back to the
previous page and note your posting before closing it. Pull data out as
many times as is necessary. You can intermingle pushes and pulls in any
sequence. This is the last-in first-out structure.

Once a stack has been set up, from the programmer’s perspective the
following points are relevant:

• The subroutine should be called using the jsr (or bsr) instruction.
• The entry point to a subroutine should be labelled, and this label is

then the name of that subroutine.
• The exit point from the subroutine should be the instruction rts. As a

matter of style there should only be one way out (and one way in) from
a subroutine.

As an example, let us code the 1 second delay subroutine. Creating a
delay in software is simply a matter of doing nothing for the appropriate



174 THE ESSENCE OF THE 6800 MICROPROCESSOR

duration. In Program 8.1 I have used a loop to count down from a con-
stant n to zero. In order to calculate the value of n we need to know the
processor’s clock speed. Details of the number of clock cycles for each
instruction/address mode combination is given in Appendix B under the
columns marked with a tilde (˜). If the clock is, say, 1 MHz, then each
cycle takes 1µs.

Program 8.1 A 1 second delay subroutine.

;***************************************************************
; * FUNCTION: Delays by one second at 1 MHz *
; * ENTRY : None *
; * EXIT : IX = 0 *
; **************************************************************

.define N=62499
DELAY_1_S: ldx #N ; The start value, 3˜
D_LOOP: dex ; Decrement, 4*N˜

nop ; Do nothing, 2*N˜
nop ; Do nothing 2*N˜
nop ; Do nothing, 2*N˜
nop ; Do nothing, 2*N˜
bne D_LOOP ; to zero, 4*N˜
rts ; and exit, 5˜

Each instruction in Program 8.1 is commented with the number of exe-
cution cycles, with K˜ denoting K cycles. The majority of the time is spent
executing the six instructions in the loop dex:nop:nop:nop:nop:bne,
which execute a total of N times. Given that the original jsr takes 9˜,
then the total delay is:

Delay = (9(jsr) + 3(ldx) + 4N(dex) + 8N(nop× 4) + 4N(bne) + 5(rts))
cycles

Substituting Delay for 106 (106 µs is 1 second) and 1 for cycles (1 MHz)
gives:

106 = (9+ 3+ 5+N × (4+ 8+ 4))
106 = 16N + 17
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16N = 106 − 17

N ≈ 62,499

Obviously instructions outside the loop contribute very little to the overall
delay in this case as N is so large and they can be ignored.5 However, for
short times the sandwich instruction delays should not be omitted from
the calculation (see Program 8.6). In this case the approximate calculation
is:

106 = N × (4+ 8+ 4))
106 = 16N

16N = 106

N = 62,500

Notice the comment box at the head of the program. It is good practice
to document your subroutine by giving a short description of what data
is present at entry, at exit and any working registers or other location
altered by the software. Where relevant an example should be given.

Most subroutines alter their environment to some extent. By environ-
ment is meant the state of the working registers, memory locations and
flags. In our example, the value of IX will be changed to zero on exit.
Although this is documented in the header comment box, the less a sub-
routine disturbs its environment the easier it is to use and the scope for
error is correspondingly reduced.

Program 8.2 is a transparent version of our original program where IX
is pushed into the stack on entry and pulled back on exit. The normal way
to save the environment on entry to a subroutine is to push any internal
register onto the stack and at the end, just before returning pull the orig-
inal data back out into these registers. Newer microprocessors, such as
the 6809 and the 68000 series have instructions that can push/pull any
selection of registers to/from the stack in one single instruction. Unfor-
tunately the 6800 only has psha, pshb, pula and pulb instructions, as
detailed in Fig. 6.1 on page 112. There is no pshx/pulx instruction.

5The resulting factor of 1 parts in a million is rather better than the typical crystal
tolerance of ±100 parts in a million!



176 THE ESSENCE OF THE 6800 MICROPROCESSOR

Program 8.2 A transparent 1 second delay subroutine.

; **************************************************************
; * FUNCTION: Delays by one second at 1 MHz *
; * ENTRY : None *
; * EXIT : None *
; **************************************************************

.define N=62496

.define TEMPORARY = 0000h
; First save the old value of IX
DELAY_1_S: psha ; Save Accumulator A, 4˜

stx TEMPORARY ; Put IX in memory, 5˜
ldaa TEMPORARY ; Get IXL, 3˜
psha ; Push it out into the stack, 4˜
ldaa TEMPORARY+1; Get IXH, 3˜
psha ; Push it out into the stack, 4˜

; Now delay
ldx #N ; The start value, 3˜

D_LOOP: dex ; Decrement, 4*N˜
nop ; Do nothing, 2*N˜
nop ; Do nothing, 2*N˜
nop ; Do nothing, 2*N˜
nop ; Do nothing, 2*N˜
bne D_LOOP ; to zero, 4*N˜

; Now retrieve the old value of IX
pula ; Get IXH, 4˜
staa TEMPORARY : 4˜
pula ; Get IXL, 4˜
staa TEMPORARY+1 ; 4˜
ldx TEMPORARY ; Put IXH:IXL into Index reg, 4˜
pula ; Finally get original A back, 4˜

rts ; and exit, 5˜

In Program 8.2 a temporary 2-byte memory location TEMPORARY is used
to store the contents of the Index register on entry. After pushing the state
of Accumulator A into the stack, both bytes of the original state of IX are
loaded from memory and pushed into the stack. On exit the process is
reversed and the original state of IX is preserved on return. It is critically
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important that the Stack Pointer should be balanced in this way so that the
return address can be picked up on exit . If the number of pushes does
not equal the number of pulls, then garbage will be placed in the PC by
rts and the system will die. This most often happens if the program is
such that there are several pathways to the exit point, or even several exit
points, and one of these omits balancing pulls. The same phenomenon
can happen if there are several entry points. Thus good programming
structure dictates that there should be only one way into and one way out
of a subroutine.

In this case saving the state of IX in memory directly to TEMPORARY
and retrieving it in the same way from absolute memory would be suffi-
cient to give transparency. However, this method is not very flexible in
general where subroutines are to be nested. Unless each subroutine uses
a different memory word as a temporary store then one subroutine may
overwrite another’s preserved value of IX. So although in the 6800 the
process using the stack is rather clumsy it is recommended.

Calculating the value N to put into IX as the countdown constant is
similar to the previous case:

106 = (9+ 4+ 5+ 3+ 4+ 3+ 4+ 3+ (6× 4)+ 5+N × (4+ 8+ 4))
106 = 16N + 64

16N = 106 − 64

N = 62,496

Once again we could ignore the sandwich around the meat (the actual
loop) and use the approximate value N = 62,500.

Our delay program is an example of a double-void subroutine, in that
no parameters (cf. signals in the hardware analog) are sent to it and noth-
ing is returned — just the side effect of a delay.

A slightly more exciting version of our subroutine is given in Pro-
gram 8.3. Here the caller determines the number of delay seconds K by
‘sending’ a parameter via B. Thus to call up a 1 minute delay, the caller
will use the sequence:

ldab #60 ; Sixty seconds in a minute = K
jsr DELAY_K_S ; Go to it!
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Program 8.3 Delaying for K seconds.

;***************************************************************
; * FUNCTION: Delays by K seconds at 1 MHz *
; * ENTRY : K in B *
; * EXIT : None *
; **************************************************************

.define N=62496

.define TEMPORARY = 0000h
; First save the old value of IX and B
DELAY_1_S: psha ; Save Accumulator A

stx TEMPORARY ; Put IX in memory
ldaa TEMPORARY ; Get IXL
psha ; Push it out into the stack
ldaa TEMPORARY+1; Get IXH
psha ; Push it out into the stack
pshb ; Save the seconds parameter

; Now delay
D_LOOP1: tstb ; Is the parameter zero?

beq EXIT ; IF it is THEN delay finished
; ELSE do one second delay

ldx #N ; The start value
D_LOOP2: dex ; Decrement

nop ; Do nothing
nop ; Do nothing
nop ; Do nothing
bne D_LOOP ; to zero

; decb ; Decrement seconds count
bra D_LOOP1 ; and repeat

; Now retrieve the old value of B & IX
pulb ; Retrieve old value of parameter
pula ; Get IXH
staa TEMPORARY
pula ; Get IXL
staa TEMPORARY+1
ldx TEMPORARY ; Put IXH:IXL into Index reg
pula ; Finally get original A back

rts ; and exit
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The actual routine itself is similar to the previous program, but each
time the second is counted out, K in B is decremented. Thus the total
delay is K × 1 s.6

In order to make the subroutine transparent, both the Index register
and Accumulator B have to be saved. Again Accumulator A is used as an
intermediary and this is the first register to be pushed. In this case IX
has been saved first followed by the Accumulator B byte. The state of the
stack during execution of Program 8.3 illustrated in Fig. 8.5 shows this
succession, with IX located first. In order to balance the stack, three pulls
must be made at the end of the subroutine. The first is to restore B (as it
was last in) and the next two reassembles the double-byte Index register
in memory. The last pull (balancing the first push) restored the state of
Accumulator A.
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(a) On arrival
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stack

(b) Saving environment
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(c) Retrieving environment

SP

stack

(d) On return

SP

psha, psha, psha, pshb pulb, pula, pula, pula rts

PCH

PCL

PCH

A

IXL

IXH

B

PCL

PCH

A

IXL

IXH

B

PCL

PCH

A

IXL

IXH

B

Figure 8.5 The state of the stack in subroutine DELAY_K_S.

In all our examples we have used accumulator registers to pass pa-
rameters. The Index registers can also be used to pass the address of
a data structure, such as an array (see Example 8.??). The 6800 family
have few internal registers that can be used to pass parameters to a sub-
routine, unlike MPUs such as the 68000 which has eight Data and eight
Address registers. In the majority of cases where the 6800 is concerned
other approaches using external memory must be used.

One possibility is to use a fixed area of RAM as a passing ground (some-

6Ignoring the small fixed time overheads.
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times called a heap), where data can be copied for transmission. This can
also be used as a working area, where intermediate data generated by the
subroutine can be temporarily stored. The problem here is that if all sub-
routines share the same block, then unintended interactions can occur.
This is contrary to our stipulation that subroutines should be stand-alone
with a minimal interaction with the general environment.

To avoid such interaction, each subroutine could be given its own pri-
vate block of RAM, from which other software is banned. If there are many
subroutines, then this technique is rather extravagant in memory usage.

A alternative approach is to use the stack to pass data to and fro, which
can be accessed using the Index register to point to the appropriate data.
Furthermore, once in a subroutine, the Stack Pointer can be moved down
to open a “hole” (known as a frame) in memory for local storage. On exit
this frame can be closed up, and this conforms to the privacy stipulation.
Newer MPUs, such as the 6809, can use a form of Indexed addressing
mode where the Stack Pointer is the Index register. This makes accessing
data on a random basis from the stack a relatively efficient process. High-
level languages, such as C make extensive use of this technique. The 6800
is deficient in this area and is rarely used to execute high-level languages.

The previous example was still void in that no data was returned to
the caller on exit. For our next example we will code a subroutine that
will evaluate the square root of an integer n passed to the subroutine in
A which is returned in B.

The crudest way of doing this is to try every possible integer k from 1
upwards, generating k2 by multiplication and checking that the outcome
is no more than n. A slightly more sophisticated approach is based on
the relationship:

k2 =
k∑
i=0

(2× i)+ 1

On this basis a possible structure for this function is:

1. Zero the loop count k
2. Set variable i to 1
3. DO forever:

• Take i from number

• IF the outcome is under zero THEN BREAK out
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• ELSE add 2 to i
• Increment the loop count k
• REPEAT loop

4. RETURN loop count k as
√
number

That is sequentially subtract the series 1,3,5,7,9,11…from number until
underflow occurs; with the tally of successful passes being the square
root. An example giving

√
65 = 8 is given in Fig. 8.6(a) using this series

approach. A flowchart visualizing the task list is also given in Fig. 8.6(b).
The software listed in Program 8.4 closely tracks the flowchart. B is

used as a working register to hold the ‘magic’ number i (which is incre-
mented by 2 in line 15). The original value of the number in Accumulator A
is saved in line 10 and restored from the stack on exit in line 19.

SQRT

count = 0

i = 0

number = number - i

<0?

Return

i = i + 2

count = count + 1

LOOP:

yes

no

number

count

 65    count = 0
-  1
 64    count = 1
-  3
 61    count = 2
-  5
 56    count = 3
-  7
 49    count = 4
-  9
 40    count = 5
-11
 29    count = 6
-13
 16    count = 7
-15
   1    count = 8
-17
-16    Terminate with square root = 8

(a) An example (b) Flowchart of the process

Figure 8.6 Finding the square root of an integer.
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Program 8.4 Coding the square root subroutine.

.processor m6800
; **************************************************************
; * FUNCTION: Evaluates the square root of an integer number *
; * EXAMPLE : 65 on entry returns 8 *
; * ENTRY : number is passed in A *
; * EXIT : No other register is altered *
; * EXIT : Root is returned in B *
; **************************************************************

.define COUNT = 0030h ; Use memory @ 0030h for count

.org 0C100h
SQRT: psha ; Protect the environment

clr COUNT ; count = 00
ldab #1 ; i = 1

S_LOOP: sba ; number = number - i
bcs S_EXIT ; Breakout if underflow (borrow)
addb #2 ; ELSE i = i + 2
inc COUNT ; count = count + 1
bra S_LOOP ; and repeat

S_EXIT: ldab COUNT ; Get COUNT, which is the sqr root
pula ; Retrieve old value of A
rts ; Return with root = count in B
.end

The core of the program is unexceptional. Notice how the bcs instruc-
tion — which some assemblers allow the alternative more meaningful
mnemonic blo — is used after the number−i operation to detect under-
flow to below zero (which sets the Carry/borrow flag) and exit the loop.

Memory location 0030h is used as a straight counter to indicate the
number of successful subtractions, and as such gives the answer ready to
return to the caller. The largest possible outcome is

√
255 = 15, which

can easily be accommodated in the byte-sized Accumulator B.

Incidentally, it really is not necessary to keep a count of the number
of successful subtractions as i = (2× count)+ 1. Thus the square root
can be deduced by keeping i in B and on exit shifting right once. This
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divides by 2 and by throwing away the 1 that pops out into the carry,
effectively predecrements by 1 (i is always odd and so its least significant
bit is always 1). Try coding this alternative arrangement.

Examples

Example 8.1
Code a subroutine that will calculate the 8-bit checksum of the 256
bytes in memory between 0000h and 00FFh. The checksum here is
defined as the complement of the modulo-256 sum of all the bytes.

Solution
Firstly you must be able to figure out what exactly you are being
asked to do. In essence you have to add together all 256 bytes in
memory located between the two specified memory locations. This
addition is to be with a resolution of eight bits. That means that any
carry from an addition is to be ignored. This is rather like adding
several 2-digit decimal numbers and ignoring any hundreds that may
be generated after each add.

The fact that you must deal with an array of data should alert you
to the fact that you will have to use the Index register as a pointer,
initialised to 0000h and incrementing until the byte in memory at
00FFh has been dealt with. You can use Accumulator B to hold the
sum as this process walks through the array. This gives us the task
list:

1.Clear the sum.

2.Initialise the Index register to point to the first byte.

3.WHILE the pointer is not over the top:

•Add byte n to the byte sum.

•Increment the pointer, that is increment n.

4.Complement the byte total sum.

The coding shown in Program 8.5 follows the task fairly closely.
As Accumulator B is eight bits wide, continually adding the pointed-
to bytes will automatically give a modulo-256 (28 = 256) sum.
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Program 8.5 Generating a checksum.

C_SUM: clrb ; Zero the byte sum
ldx #0000 ; Point to the start of the array @ 0000h

LOOP: addb 0,x ; Add the byte in memory @ where IX points to
inx ; Advance the pointer
cpx #0100h ; Over the top? (00FF + 1 = 0100h)
bne LOOP ; IF not THEN add the next byte

comb ; Complement the byte total sum
rts ; and return from subroutine

Incrementing IX on each pass through the loop will eventually give a
value above the address of the top array byte. At this point the loop
is exited and the subroutine exited after the sum is complemented
as specified.

Example 8.2
Write a subroutine to give a fixed 208µs delay. You may assume a
1 MHz processor clock rate which will give an execution cycle time of
1µs.

Solution
The solution shown in Program 8.6 is similar to that in Program 8.2,
but as the delay is so short, the surrounding instructions and jsr
need to be accounted for. In addition Accumulator A is used as the
delay counter and no nop instructions used to pad out the execution
time. The delay calculation is:

Total delay is 9+ 4+ 2+ 2N + 4N + 4+ 5µs
24+ 6N = 208

6N = 184

N ≈ 30
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Program 8.6 A transparent 208µs delay subroutine.

; **************************************************************
; * FUNCTION: Delays by 208 microseconds at 1 MHz *
; * ENTRY : None *
; * EXIT : None *
; **************************************************************

.define N=31
DELAY_1_S: psha ; Save Accumulator A, 4˜

; Now delay
ldaa #N ; The start value, 2˜

D_LOOP: deca ; Decrement, 2*N˜
bne D_LOOP ; to zero, 4*N˜

; Now retrieve the old value of A
pula ; 4˜

rts ; and exit, 5˜

This program will be 4µs too short using a value of N = 30.
Adding two nops, each with a delay of 2µs, outside the loop would
tune the delay to the desired value of 208µs.

Example 8.3
The majority of digital electronic displays are based on a selective
activation of seven segments7 in the manner shown in Fig. 8.7. Write
a transparent subroutine that will accept a four-bit binary coded
decimal nybble n (0000 – 1001b) in Accumulator A and exit with the
listed seven-segment code. No other registers are to be altered on
exit. Interface details for seven-segment displays are given in Fig. ??
on page ??.

Solution
The easiest way of implementing this task is to store the ten seven-
segment codes as a look-up table, in the manner of the electrocardio-
gram of Program 7.4 on page 162. As the table comprises ten bytes,

7Just look at your digital watch.
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11000000 11111001 10100100 10110000 10011001 10010010 10000010 11111000 10000000 10010000

Figure 8.7 The seven-segment BCD font.

the .byte directive is used in Program 8.7 following the executable
code.

The program itself follows the following coding task list.

1.Save the IX and A registers.

2.Add the byte number n to the base address of the table to point to
entry n.

3.Extract table entry n into Accumulator B.

4.Restore the original value of IX and Accumulator A.

5.Return.

as delimited by the appropriate comments.
In order to add n to the value of the Index register a word in

memory is used as a temporary 2-byte store, TEMP2:TEMP2+1 (at
0032:3h. With the table base address put into IX (ldx #TABLE) it
is transferred into memory (stx TEMP2) and then the contents of
Accumulator A added to the double-byte number in memory in the
usual way (see Program 3.7 on page 74). With this done the address
TABLE + n is moved back into IX which then points to entry n in the
table. As we are using temporary memory storage for this addition
I have also used a double-byte location to temporarily store the
original value of IX for later retrieval.8

Example 8.4
Write a program to flash a light-emitting diode (LED) five times at
1-second intervals. This will involve:

8Random table retrieval is horribly complicated with the 6800 MPU. The 6809 MPU
tidied up this function by allowing an accumulator to be an offset for Indexed addressing.
The program then would be pshs X — ldx #TABLE — ldab a,x — puls x — rts.
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Program 8.7 The seven-segment decoder.

; **************************************************************
; * FUNCTION: Converts from BCD binary n to *
; * FUNCTION: BCD active-low 7-segment code *
; * ENTRY : Binary in A, Table of ten 7-segments following *
; * EXIT : 7-segment code in B, A and IX unchanged *
; **************************************************************

.define TEMP1 = 0030h, TEMP2 = 0032h
; Task 1: Save the IX and A registers
SVN_SEG: psha ; Save original contents of A

stx TEMP1 ; Put original value away for safekeeping
; Task 2: Add the BCD number n to the table base address

ldx #TABLE ; Point IX to table below
stx TEMP2 ; Put into memory
ldab TEMP2+1 ; Get LSB of table bottom
aba ; Add the value n
staa TEMP2+1 ; and put in memory
ldab TEMP2 ; Get MSB of table bottom
adcb #0 ; Add the carry bit
stab TEMP2 ; put away in memory
ldx TEMP2 ; and back into IX

; The value of IX is now #TABLE + n
; Task 3: Extract table entry n

ldab 0,x ; Copy entry at TABLE+n to B
; Task 4: Restore the original values of IX and A

ldx TEMP1 ; Restore original value of IX
pula ; and the original value of A

; Task 5: Return
rts ; Return with the goodies in B

; This is the table of seven-segment codes
TABLE: .byte 11000000b, 11111001b, 10100100b, 10110000b,

10011001b, 10010010b, 10000010b, 11111000b,
10000000b, 10010000b

1.Writing a 0.5-second delay subroutine.

2.Writing a main routine calling up the delay routine the appro-
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priate number of times and controlling the LED.

You may assume that the LED is turned on by accessing memory
location 9006h and off by accessing 9007h. The microprocessor is
running at a clock rate of 1 MHz.

Solution
The first part of this specification is similar to that of Program 8.1
but as the delay is somewhat shorter the nops are not required.
Given that the original jsr takes 9˜, then the total delay is:

Program 8.8 A 0.5 second delay subroutine.

;***************************************************************
; * FUNCTION: Delays by 0.5 second at 1 MHz *
; * ENTRY : None *
; * EXIT : IX = 0 *
; **************************************************************

.define N=62499
DELAY_500_MS: ldx #N ; The start value, 3˜
D_LOOP: dex ; Decrement, 4*N˜

bne D_LOOP ; to zero, 4*N˜
rts ; and exit, 5˜

Delay = (9(jsr) + 3(ldx) + 4N(dex) + 4N(bne) + 5(rts)) cycles

Substituting Delay for 0.5× 106 (0.5 second) and 1 for cycles (1 MHz)
gives:

0.5× 106 = (9+ 3+ 5+N × (4+ 4))
0.5× 106 = 8N + 17

8N = 0.5× 106 − 17

N ≈ 62,498

The second part of the specification involves writing the main
routine that calls this subroutine ten times in all. Five of these calls
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follow when the LED is illuminated and five when the LED is turned
off. The coding in Program 8.9 uses a loop, with Accumulator B
holding the flash count from five down to zero.

Program 8.9 Five 1-second flashes.

.org 0C000h

MAIN: ldab #5 ; Hold the flash count
FLOOP: clr 9006h ; LED on

jsr DELAY_500_MS ; for 0.5 seconds
clr 9007h ; LED off
jsr DELAY_500_MS ; for 0.5 seconds

decb ; Decrement count
bne FLOOP ; and repeat five times
.... ....

Example 8.5
The binary approximation to the fraction 1

3 is:

1

3
= 1

2
− 1

4
+ 1

8
− 1

16
+ 1

32
− 1

64
+ 1

128
· · ·

Using this series, write a subroutine that will divide a byte in Accumu-
lator B by three with the quotient being returned in Accumulator A.
The outcome up to 1

128 is 0.3359375, which is within 0.78% of the
exact value. With an 8-bit datum there is no point in including any
further elements in the series.

Solution
The fractions 1

2 , 1
4 etc. can be easily generated by shifting right. The

coding listed in Program 8.10 simply repetitively shifts the number
in situ in Accumulator B right. With each shift the outcome is either
added to or subtracted from the sum kept in an initially cleared
Accumulator A.
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Program 8.10 Dividing by three

DIV_3: clra ; Zero the outcome
lsrb ; N/2
aba ; Q = N*(1/2)
lsrb ; N/4
sba ; Q = N*(1/2-1/4)
lsrb ; N/8
aba ; Q = N*(1/2-1/4+1/8)
lsrb ; N/16
sba ; Q = N*(1/2-1/4+1/8-1/16)
lsrb ; N/32
aba ; Q = N*(1/2-1/4+1/8-1/16+1/32)
lsrb ; N/64
sba ; Q = N*(1/2-1/4+1/8-1/16+1/32-1/64)
lsrb ; N/128
aba ; Q = N*(1/2-1/4+1/8-1/16+1/32-1/64+1/128)
rts

Self-assessment questions

8.1 A frequent mistake made by students in code such as Program 8.1,
is to write bne DELAY_1_S. What would happen in this situation?

8.2 Alter Program 8.2 to give a variable delay of 1
n s, where n is a

parameter passed in B.

8.3 Using the routine of Program 6.7 on page 142, write a subroutine
to update a pseudo-random number located in RAM at a location
which is pointed to by IX on entry, with the next in the sequence
being placed there on exit. The subroutine should be transparent.

8.4 Modify the your solution to the previous problem to return a random
number in B between 1 and 6, for a game of dice. Note: dividing a
number by six gives a remainder of between 0 and 5. Adding one
moves the range to 1 – 6. Thus update the random number and
divide a copy of the number by six. Increment to give the required
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range.

8.5 As part of an operating system a subroutine is to be written to test
memory from 0000h through 1FFFh. The technique is to store the
code 01010101b (55h) in each memory location and check that the
contents are in fact as they should be. If the test is successful then
the value 00h should be in Accumulator A on return otherwise the
test should abort with FFh returned in A and with the Index register
pointed to the memory location which is faulty. Assume that the
subroutine starts at C200h.

8.6 Parity is a method of error protection whereby each byte of data has
the most significant bit set in such a way to ensure that the overall
number of bits in the byte is odd or even. Write a subroutine that
will convert all bytes between 0030h and 00FFh to odd 1’s parity.
You may assume that the existing patterns have a 0 in the most
significant bit position 7.

The task list is:

1. Set pointer to 0030h.

2. WHILE pointer is less than 1000h DO:

(a) Count up the number of bits in the pointed-to byte (see Pro-
gram 6.3 on page 124).

(b) Determine if this number is odd or even. The weight of the least
significant bit is one (20), whilst all other bits are even (eg. 2, 4,
8…). Thus an odd binary number always has bit 0 = 1.

(c) IF even THEN set bit 7 of the pointed-to number to 1 ELSE leave
bit 7 at 0.

3. Increment pointer.

8.7 Write a transparent subroutine to generate the appropriate pattern
on an array of active-low light-emitting diodes to simulate an
electronic game die (although I have shown seven bits corresponding
to the seven ‘pips’, a close look at the patterns shows that this could
be reduced to only four). The ‘throw’ enters the subroutine as a
number between 1 and 6 (which is the outcome of a random-number
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generator such as outlined in Example 8.4) in A and the die pattern
is available on exit in B. Hint: see Example 8.3.

Throw  gfedcba

  1    0111111

  2    1110110

  3    0110110

  4    1100100

  5    0100100

  6    1000000

a b
c
de

f g

3Fh

h76

h36

h64

h24

h40

Subroutine
DIE

Die pattern
(D7.B)

Throw
(D0.B)

Figure 8.8 The active-low die patterns.

8.8 Interfacing digital electronics to the analog world invariably intro-
duces noise into the signal, even if there was none there before.
One of the simplest filtering algorithms to enhance the signal to
noise ratio is digital smoothing. This technique involves generating
a composite value in which each point is replaced by an average of
itself with its nearest neighbours, i.e. pre samples.

The waveform shown to the left of Fig. 8.9 has a noise blip situated
at its 5th sample (n = 5). The smoothed version is the equivalent
with each point generated according to the formula:

F(n) = (0.25)An−2 + (0.5)An−1 + (0.25)An

Write a subroutine reading one sample from a A/D converter
located at 9004h and returning with the composite value. You may
use memory locations 0030h, 0031h and 0032h to store the current
and two last samples. These memory bytes will have to be updated
on each call to the subroutine. The filtered value is to be returned in
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Accumulator A. Hint: Use the Index register to point to the bottom
of the 3-byte data array.

Raw  data Smoothed  data

Figure 8.9 Three-point smoothing.
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The real world
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Figure 10.1 The Read cycle during execution of the instruction ldaa 9000h.
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Figure 10.2 The Write cycle during execution of the instruction staa 9001h.



Appendix A

Glossary

\ A negative-going edge.

/ A positive-going edge.

\ / An active-low pulse.

/ \ An active-high pulse.

2’s complement A method of representing negative numbers. The number
is changed to the opposite sign by inverting all bits and
adding 1.

A This 8-bit Accumulator register is primarily used as one of
two working register for the ALU.

Address A reference of the location of data in memory or within I/O
space.

an Address bus line n. The 68000 family mainly have 32 ad-
dress lines and thus can access 232 = 4,294,967,296 or
4 Gbytes of memory/peripheral input/output.

A/D converter Analog to Digital converter. Converts an analog signal, con-
tinually variable between an upper and lower level, to an
n-bit digital equivalent.

Address mode The technique an instruction uses to pin-point where in
memory an operand lies.

ALU Arithmetic Logic Unit. The digital circuitry that implements
the fundamental operations, such as add, subtract, AND,
OR, NOT.

ANSI American National Standard Institute.

ASCII American Standard Code for Information Interchange. An
early and nearly universal standard equating a range of let-
ters, numbers, punctuation and control character mapped

196
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on to a seven-bit binary code. It has been extended to var-
ious eight-bit supersets and to 16-bit Unicode as used in
Microsoft’s Windows 95.

B This 8-bit Accumulator register is primarily used as one of
two a working registers for the ALU.

BCD Binary Coded Decimal. A hybrid decimal/binary coding
technique whereby each digit of a decimal number is re-
placed one of ten binary patterns. Where this code is the
normal 8-4-2-1 arrangement, the term natural BCD is some-
times used.

Binary A number system using a base of 2.

Bit Binary digIT. A physical variable, such as voltage or light,
having two states.

Byte Eight-bit binary word, giving 28 = 256 unique combina-
tions.

C Carry flag. Doubles as a borrow indicator for Subtraction
and Comparison operations.

CCR Code Condition Register. Holds the flags and Interrupt
mask bit in the order H, I, N, Z, V, C.

CMOS Complimentary Metal-Oxide Semiconductor. A fabrication
technique using both N- and P-channel field-effect transis-
tors.

CPU Central Processing Unit. The component of a computer that
controls the interpretation and execution of instructions.

CS Active-low Chip Select signal. The standard designation on
memory and peripheral devices indicating input(s) which
must be active to enable that chip.

D/A converter Digital to Analog converter. Converts an n-bit digital word
to its analog equivalent.

dn Data bus line n. The main data flow between the MPU and
the outside world is along this common 8-bit Data highway.

ea Effective Address. The calculated source or/and destina-
tion address according to the address mode used.

EPROM Erasable Programmable Read-Only Memory. A PROM that
can be erased under high-intensity ultra-violet light, then
reprogrammed. One-time programmable (OTP) versions
without the quartz window are available.
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G Giga, a prefix indicating a billion. Specifically in binary sys-
tems 230 = 1,073,741,824.

H Half-carry flag. The carry between bit 3 and bit 4 of a byte.
This is useful where the byte is representing two BCD digits,
and then stands for the carry from the lower to the upper
BCD digit. Only the Add instructions activate this flag.

Handshake The protocol used to set up, sequence and terminate a flow
of data between two or more peripheral devices and a con-
troller.

Hexadecimal Pertaining to a number system with a base of 16. Usu-
ally used a shorthand representation for binary numbers
grouped in four digits.

I The Interrupt mask bit in the CCR. When 1 IRQ requests are
ignored.

IC Integrated Circuit. An electronic circuit fabricated on a
semiconductor material, typically silicon.

IEC International Electrotechnical Commission

IRQ Interrupt ReQuest line used to request a maskable interrupt
service.

IX The 16-bit Index register is primarily used to hold an ad-
dress to point to a datum byte in memory using the Indexed
address mode.

Interrupt A signal that when activated causes the MPU to transfer
program control to a particular software module called an
ISR.

I/O port An input or/and output connection providing for data com-
munication between MPU and a peripheral device.

ISR Interrupt Service Routine. The subroutine entered via an
interrupt request or other exception. It must be terminated
with an rti instruction rather than an rts.

LIFO Last-In First-Out store, known as a push-down stack.

K Kilo, a prefix indicating a thousand. Specifically in binary
systems 210 = 1,024.

LDS Active-low Lower Data Strobe status signal. Indicates when-
ever the data on the lower byte of the Data bus is valid (see
also UDS).
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LED Light-Emitting Diode.

LSB Least Significant (rightmost) Bit or Byte.

LSI Large-Scale Integration. Describing an IC with between 100
and 1000 gate complexity (see also SSI, MSI and VLSI).

LSD Least Significant Digit (typically of a decimal or BCD num-
ber).

M Mega, a prefix indicating a million. Specifically in binary
systems 220 = 1,048,576.

MCU MicroController Unit. A microprocessor integrated on the
same chip as support circuitry such as memory, I/O ports
and timers.

MPU MicroProcessor Unit. The ALU and control elements of a
computer-like processor integrated on the one IC.

ms Millisecond (10−3 s).

MSB Most Significant (leftmost) Bit or Byte.

MSD Most Significant Digit (typically of a decimal or BCD num-
ber).

MSI Medium-Scale Integration. Describing an IC with between
12 and 100 gate complexity, e.g. a decoder (see also SSI, LSI
and VLSI).

N Negative flag. Reflects the state of the most significant bit
after an instruction (see also Sign bit).

NMI Non-Maskable Interrupt line used to request a non-maskable
interrupt service.

ns Nanosecond (10−9 s).

Nybble Four-bit binary word, giving 24 = 16 unique combinations.

OE Active-low Output Enable signal, usually pertaining to the
three-state output buffers in a memory or other peripheral
input port.

OS Operating System. Software that controls the execution of
a computer system that links the hardware environment to
the user program and may provide facilities such as debug-
ging and multitasking.

PC Program Counter. Instruction pointer to the instruction
being fetched from memory.
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PC Personal Computer.

PROM Programmable Read-Only Memory. Generic term for a mem-
ory chip that can be programmed once or relatively few
times, usually before insertion into the circuit. typically
holds program and fixed data in embedded microproces-
sor systems (see also EPROM).

RAM Random Access Memory. Memory that is written into and
read from in circuit, in which any location may be accessed
with the same time delay. Typically holds temporary data
and the stack.

Register An array of flip flops or latches normally holding a single
word in the CPU.

RTL Register Transfer Language. A notation describing the op-
eration of an instruction viewed from the perspective of
moving data between registers and/or memory.

R/W The Read/Write status signal from the microprocessor to
memory and other circuitry, giving the direction of transfer
of data along the Data bus.

Sign bit The MSB of a signed word, usually 1 for negative.

Stack A last-in first-out data structure in memory used in con-
junction with the Stack Pointer to hold the return address
for subroutines, the processor state for interrupts and to
hold accumulator register data temporarily using the psh
and pul instructions to push and pull data into and out of
the structure.

SP Stack Pointer. The address register automatically used to
point to the current byte in the stack.

SSI Small-Scale Integration. Describing a simple IC with typi-
cally a few gates’ complexity (see also MSI, LSI and VLSI).

TTL Transistor Transistor Logic family. A common bi-polar cir-
cuit implementation largely coonfined to SSI and MSI logic
circuits. The voltage and current levels are a de facto stan-
dard in logic circuits of any implementation type.

µ s Microsecond (10−6 s).

VLSI Very Large-Scale Integration. Describing an IC with a com-
plexity of over 1000 gates, such as a memory (see also SSI,
MSI and LSI).
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VMA Valid Memory Access status line indicating that the pattern
on the Address bus is valid.

Z The Zero flag. Set when the oucome of an instruction exe-
cution is zero.
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Acc. & memory Immed Direct Index Extend Inher CCR Description
Operation/Mnemonic OP ˜ # OP ˜ # OP ˜ # OP ˜ # OP ˜ # H N Z V C
ADD adda 8B 2 2 9B 3 2 AB 5 2 BB 4 3

√ √ √ √ √
[A] <- [A] + [M]

addb CB 2 2 DB 3 2 EB 5 2 FB 4 3
√ √ √ √ √

[B] <- [B] + [M]
Add accums aba 1B 2 1

√ √ √ √ √
[A] <- [A] + [B]

ADd with Carry adca 89 2 2 99 3 2 A9 5 2 B9 4 3
√ √ √ √ √

[A] <- [A] + [M] + C
adcb C9 2 2 D9 3 2 E9 5 2 F9 4 3

√ √ √ √ √
[B] <- [B] + [M] + C

AND anda 84 2 2 94 3 2 A4 5 2 B4 4 3 • √ √
0 • [A] <- [A] · [M]

andb C4 2 2 D4 3 2 E4 5 2 F4 4 3 • √ √
0 • [B] <- [B] · [M]

BIT test bita 85 2 2 95 3 2 A5 5 2 B5 4 3 • √ √
0 • [A] · [M]

bitb C4 2 2 D4 3 2 E4 5 2 F4 4 3 • √ √
0 • [B] · [M]

CLeaR clr 6F 7 2 7F 6 3 • 0 1 0 0 [M] <- #00
clra 4F 2 1 • 0 1 0 0 [A] <- #00
clrb 5F 2 1 • 0 1 0 0 [M] <- #00

CoMPare cmpa 81 2 2 91 3 2 A1 5 2 B1 4 3 • √ √ √ √
[A] - [M]

cmpb C1 2 2 D1 3 2 E1 5 2 F1 4 3 • √ √ √ √
[B] - [M]

Compare accums cba 11 2 1 • √ √ √ √
[A] - [B]

COMplement (1’s) com 63 7 2 73 6 3 • √ √
0 1 [M] <- [M]

coma 43 2 1 • √ √
0 1 [A] <- [A]

comb 53 2 1 • √ √
0 1 [B] <- [B]

Complement (2’s) neg 60 7 2 70 6 3 • √ √ 1 2 [M] <- #00 - [M]

nega 40 2 1 • √ √ 1 2 [A] <- #00 - [A]

negb 50 2 1 • √ √ 1 2 [B] <- #00 - [B]

Decimal Adjust A daa 19 2 1 • √ √ √ 3 Adjusts sum of BCD bytes
to BCD formatted byte

DECrement dec 6A 7 2 7A 6 3 • √ √ 4 • [M] <- [M] - #1

deca 4A 2 1 • √ √ 4 • [A] <- [A] - #1

decb 5A 2 1 • √ √ 4 • [B] <- [B] - #1
Exclusive OR eora 88 2 2 98 3 2 AB 5 2 BB 4 3 • √ √

0 • [A] <- [A] ⊕ [M]
eorb C8 2 2 D8 3 2 E8 5 2 F8 4 3 • √ √

0 • [B] <- [B] ⊕ [M]

INCrement inc 6C 7 2 7C 6 3 • √ √ 5 • [M] <- [M] + #1

inca 4C 2 1 • √ √ 5 • [A] <- [A] + #1

incb 5C 2 1 • √ √ 5 • [B] <- [B] + #1
LoaD Accum ldaa 86 2 2 96 3 2 A6 5 2 B6 4 3 • √ √

0 • [A] <- [M]
ldab C6 2 2 D6 3 2 E6 5 2 F6 4 3 • √ √

0 • [B] <- [M]
OR oraa 8A 2 2 9A 3 2 AA 5 2 BA 4 3 • √ √

0 • [A] <- [A] + [M]
orab CA 2 2 DA 3 2 EA 5 2 FA 4 3 • √ √

0 • [B] <- [B] + [M]
PuSH accum. psha 36 4 1 • • • • • [Mstack] <- [A]; SP--

pshb 37 4 1 • • • • • [Mstack] <- [B]; SP--
PULl to accum. pula 32 4 1 • • • • • SP++; [A] <- [Mstack]

pulb 33 4 1 • • • • • SP++; [B] <- [Mstack]
ROtate Left rol

rola
rolb

69 7 2 79 6 3
49
59

2
2

1
1

•
•
•

√
√
√

√
√
√

6
6
6

√
√
√

C

7 0

M
A
B

ROtate Right ror
rora
rorb

66 7 2 76 6 3
46
56

2
2

1
1

•
•
•

√
√
√

√
√
√

6
6
6

√
√
√

C

7 0

M
A
B

Shift Left, Arith. asl
asla
aslb

68 7 2 78 6 3
48
58

2
2

1
1

•
•
•

√
√
√

√
√
√

6
6
6

√
√
√

C 7 0

M
A
B 0

Shift Right, Arith. asr
asra
asrb

67 7 2 77 6 3
47
57

2
2

1
1

•
•
•

√
√
√

√
√
√

6
6
6

√
√
√

C7 0

M
A
B

Shift Right, Logic lsr
lsra
lsrb

64 7 2 74 6 3
44
54

2
2

1
1

•
•
•

√
√
√

√
√
√

6
6
6

√
√
√

C7 0

M
A
B 0

STore Accum. staa 97 4 2 A7 6 2 B7 5 3 • √ √
0 • [M] <- [A]

stab D7 4 2 E7 6 2 F7 5 3 • √ √
0 • [M] <- [B]

SUB suba 80 2 2 90 3 2 A0 5 2 B0 4 3 • √ √ √ √
[A] <- [A] - [M]

subb C0 2 2 D0 3 2 E0 5 2 F0 4 3 • √ √ √ √
[B] <- [B] - [M]

Sub accums sba 10 2 1 • √ √ √ √
[A] <- [A] - [B]

SuB with Carry sbca 82 2 2 92 3 2 A2 5 2 B2 4 3 • √ √ √ √
[A] <- [A] - [M] - C

sbcb C2 2 2 D2 3 2 E2 5 2 F2 4 3 • √ √ √ √
[B] <- [B] - [M] - C

Transfer accums. tab 16 2 1 • √ √
0 • [A] <- [B]

tba 17 2 1 • √ √
0 • [B] <- [A]

TeST zero or minus tst 6D 7 2 7D 6 3 • √ √
0 0 [M] - #00

tsta 4D 2 1 • √ √
0 0 [A] - #00

tstb 5F 2 1 • √ √
0 0 [B] - #00
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Index reg. & Stack ptr. Immed Direct Index Extend Inher CCR Description
Operation/Mnemonic OP ˜ # OP ˜ # OP ˜ # OP ˜ # OP ˜ # H N Z V C

ComPare indeX reg. cpx 8C 3 3 9C 4 2 AC 6 2 BC 5 3 • 7 √ 8 • [X] - [M:M+1]
DEcrement indeX reg. dex 09 4 1 • • √ • • [X] <- [X] - #1
DEcrement Stack ptr. des 34 4 1 • • • • • [SP] <- [SP] - #1
INcrement indeX reg. inx 08 4 1 • • √ • • [X] <- [X] + #1
INcrement Stack ptr. ins 31 4 1 • • • • • [SP] <- [SP] + #1

LoaD indeX reg. ldx CE 3 3 DE 4 2 EE 6 2 FE 5 3 • 9 √
0 • [X] <- [M:M+1]

LoaD Stack pntr. lds 8E 3 3 9E 4 2 AE 6 2 BE 5 3 • 9 √
0 • [SP] <- [M:M+1]

STore indeX reg. stx DF 5 2 EF 7 2 FF 6 3 • 9 √
0 • [M:M+1] <- [X]

STore Stack pntr. sts 9F 5 2 AF 7 2 BF 6 3 • 9 √
0 • [M:M+1] <- [SP]

Transfer indeX to Stack pntr. txs 35 4 1 • • • • • [SP] <- [X]
Transfer Stack pntr. to indeX tsx 30 4 1 • • • • • [X] <- [SP]

Branch & Jump Rel Index Extend Inher CCR Description
Operation/Mnemonic OP ˜ # OP ˜ # OP ˜ # OP ˜ # N Z V C

Branch Always bra 20 4 2 • • • • Skip always
Branch if:
Carry Clear bcc 24 4 2 • • • • Skip if C is 0
memory Higher or Same10 as accum. bcc11 24 4 2 • • • • Skip if C is 0
Carry Set bcs 25 4 2 • • • • Skip if C is 1
memory LOwer10 than accum. bcs12 25 4 2 • • • • Skip if C is 1
Not Equal to zero bne 26 4 2 • • • • Skip if Z is 0
EQual to zero beq 27 4 2 • • • • Skip if Z is 1
memory HIgher10 than accum. bhi12 22 4 2 • • • • Skip if C + Z = 0
memory LOwer10 or same as accum. bls 23 4 2 • • • • Skip if C + Z = 1
oVerflow Clear bvc 28 4 2 • • • • Skip if V is 0
oVerflow Set bvs 29 4 2 • • • • Skip if V is 1
Plus bpl 2A 4 2 • • • • Skip if N is 0
MInus bmi 2B 4 2 • • • • Skip if N is 1
memory Greater or Equal12 to accum. bge 2C 4 2 • • • • Skip if N⊕V = 0
memory Less Than12 accum. blt 2D 4 2 • • • • Skip if N⊕V = 1
memory Greater Than12 accum. bgt 2E 4 2 • • • • Skip if N⊕V·Z = 1
memory Less or Equal12 to accum. ble 2F 4 2 • • • • Skip if N⊕V·Z = 0
Branch to SubRoutine bsr 8D 8 2 • • • • Skip always after pushing

[PC] onto stack
JuMP to ea jmp 6E 4 2 7E 3 3 • • • • Goto ea
Jump to SubRoutine at ea jsr AD 8 2 BD 9 3 • • • • Push [PC] onto stack

then goto ea
No OPeration nop 01 2 1 • • • • [PC] <- [PC] + 1

ReTurn from Interrupt rti 38 10 1 <—13—> Restore last state from stack
ReTurn from Subroutine rts 39 5 1 • • • • Pull PC from stack
SoftWare Interrupt swi 3F 12 1 • • • • Save state on stack

then goto [FFFA:Bh]
WAit for Interrupt wai 3E 9 1 • • • • Idle until interrupt

Code Condition Register Inher CCR Description
Operation Mnemonic OP ˜ # H I N Z V C

CLear Carry clc 0C 2 1 • • • • • 0 [C] <- #0
SEt Carry sec 0D 2 1 • • • • • 1 [C] <- #1
CLear oVerflow clv 0A 2 1 • • • • 0 • [V] <- #0
SEt oVerflow sev 0B 2 1 • • • • 1 • [V] <- #1
CLear Interrupt mask cli 0E 2 1 • 0 • • • • [I] <- #0
SEt Carry sec 0F 2 1 • 1 • • • • [I] <- #1
Transfer A to CCR tap 06 2 1 A5 A4 A3 A2 A1 A0 [CCR] <- [A]
Transfer CCR to A tpa 07 2 1 • • • • • • [A] <- [CCR]
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Accumulator A, 85
Accumulator B, 85
Accumulator register, 48
Address, 46, 157
Address bus, 49, 83
Address mode, 59, 94–108, 109

Absolute, 59, 98
Direct, 61, 98
Extended, 98
Immediate, 59, 97
Indexed, 61, 75, 86, 99, 135
Inherent, 59, 95, 97
Relative, 63, 100

Address register, 86
AND, see Operation, AND
Architecture, 45
Array, 96

Clearing, 62
ASCII code, see Code, ASCII
Assembler, 150

Absolute, 153
Comment, 51, 154
Directive

.byte, 159, 162, 186

.define, 72, 159

.double, 159

.list, 160

.org, 153, 159

.word, 159
Label, 62, 153, 154, 155
Relocating, 153
Syntax

. (current PC), 63, 66
# (Immediate data), 52, 59, 97
Long Branch, 105

Assembly-level language, 51, 150

Binary Coded Decimal (BCD)
Binary to BCD conversion, 118

Bus
Address, 48
Data, 48

Checksum, see Error detection, Check-
sum

Clock, 49, see Control bus, E
Code

Binary Coded Decimal (BCD), 5, 87,
185

Decimal, 1
Hexadecimal, 5, 50
Seven-segment, 185

Code Condition Register (CCR), 36, 58,
125

Computer
Von Neumann, 44–78

Control bus, 49, 83
E, 85
Halt, 85
IRQ, 85
NMI, 85
Reset, 85
R/W, 49, 49, 85
VMA, 85

Counter, 38

D flip flop, see Flip flop, D
D latch, see Latch, D
Data bus, 20, 49, 50, 83, 137
Division, see Operation, Division

Effective address (ea), 98
Erasible PROM (EPROM)

205
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2764, 27
Error

Checksum, 102
Error detection

Checksum, 76, 157
Parity, 16, 146, 191

Exclusive-OR, see Operation, EOR
Extension

Signed, 10

Fetch and execute, 46, 52–57
File

Error, 158
Listing, 155
Machine code, 153, 155

S1-S9, 157
S2-S8, 157
S3-S7, 157

Source code, 153, 154
Filter

3-point, 192
Flag, 36, 138

C, 36, 58, 63, 65, 88, 123, 128, 135,
137

H, 87, 88, 117
N, 36, 58, 88, 123, 125, 135
V, 36, 86, 88, 129, 135, 137
Z, 36, 58, 65, 88, 88, 119, 125, 128,

129, 135
Flip flop

D, 33
T, 37

Flow chart, 72

Hexadecimal code, see Code, Hexadeci-
mal

High-level language
C, 46, 169

Index register (IX), 58, 61, 86, 88, 90, 135
Instruction

bls, 135
bsr, 172
aba, 114
abx, 90
adca, 63, 71
adda, 51, 63
anda, 65, 118

andb, 118
and, 125
asla, 65, 120
aslb, 120
asl, 65, 120
asra, 123
asrb, 123
asr, 123
bcc, 66, 128
bcs, 66, 182
beq, 66, 119, 125, 128, 135
bgt, 130
bhi, 132
bhs, 66, 128
bita, 127
bitb, 127
blo, 66, 182
bls, 132
blt, 130
bne, 63, 66, 106, 128, 135
bra, 106, 132
clc, 137
cli, 88
clra, 59, 64, 69, 72
clr, 64
clv, 137
cmpa, 66, 129, 130
cmpb, 129
coma, 65, 118
comb, 118
com, 65, 118
cpx, 135
daa, 87, 117
deca, 64
dec, 64, 116
des, 135
dex, 64, 135
eora, 119
eorb, 119
inca, 64, 95, 97, 118
inc, 64, 114
ins, 135
inx, 62, 64, 135
jmp, 57, 67, 105, 134, 170
jsr, 172, 174, 188
ldaa, 64, 72, 110, 125
ldab, 110
lds, 113, 136, 172
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ldx, 62, 64, 136
lsla, 65
lsl, 65, 122
lsra, 65, 120
lsrb, 120
lsr, 65, 120
neg, 116
nop, 95, 97, 135
oraa, 65, 76
ora, 119
psha, 112
pshb, 112
rola, 124
rolb, 124
rol, 124
rora, 124
rorb, 124
ror, 124
rts, 95
sba, 114
sec, 137
sei, 88
sev, 137
staa, 64, 110
stab, 110
sts, 136
stx, 64, 136
suba, 63, 130
tap, 137
tpa, 137
tsta, 125
tstb, 125
tst, 125
Read–modify–write, 116

instruction
tab, 111
tba, 111

Instruction set, 59–67
Integrated circuit

2764 EPROM, 27
6264 RAM, 40
74LS00 quad 2-I/P NAND, 18
74LS138 Natural decoder, 23
74LS139 Natural decoder, 21, 40
74LS283 Adder, 25
74LS377 Octal D flip flop, 33
74LS382 ALU, 25, 27
74LS670 Register file, 40

74LS688 Equality detector, 23
74LS74 dual D flip flop, 33, 39

Interrupt
Maskable, 85
Non-maskable, 85

Interrupt mask (I), 88

Label
Arithmetic, 159

Latch
R S, 31
D, 32
R S, 30

Linker, 153
Loader, 150
Look-up table, 26, 162, 185
Loop, 96
Loop structure, 62, 72

Machine code, 50, 106
Mask

I, 85, 88, 137
Memory

EPROM, 27
RAM, 40
ROM, 26

MicroProcessor Unit (MPU), 79–83
68000+

Address bus, 157
6808Ýii, 83
68008, 82, 86
68020

Address bus, 157
4004, 3, 80
6502, 82
6800, 81
6802, 81–93
6809, 81, 99–101, 105, 113, 136
8008, 80
8080, 80
8085, 80
8086, 82
8088, 82

Modular programming, 169
Multiple-precision operations

Shift, 124
Multiplication, see Operation, Multipli-

cation
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NOT, see Operation, NOT
Number

Odd, 147, 191

Odd number, see Number, Odd
Open-collector, 20
Operation

AND, 13
Arithmetic Shift Left, 11
Arithmetic Shift Right, 12
Branch, 63, 66, 107

Long, 67, 105–135
Circular Shift, 124
Clearing, 64
Comparison, 127

Unsigned, 66
Conditional Branch, 63, 66, 130, 132,

135
Decrementation, 64
Division, 11, 92, 114, 142
ENOR, 15, 23
EOR, 14
Exclusive-OR, 119
Incrementation, 64
Linear shift, 121
Logic

AND, 118
NOT, 118

Logic Shift Left, 11, 65
Logic Shift Right, 12, 65
Multiple-precision shifting, 91
Multiplication, 11, 72, 90
NAND, 13, 18, 31
NOR, 30
NOT, 12
OR, 13, 119
Test, 125

Operation code (op-code), 26, 35, 48, 50,
59–63, 95, 97

OR, see Operation, OR

Port
Read-only, 128

Program
Average of an array, 151
Checksum, 76, 104, 184
Clearing an array, 62
Delay, 174–179, 185, 188

Division, 114, 190
Double-precision addition, 71
Filling an array, 75
Look-up table, 101
Modulo-6, 143
Multiple-precision shifting, 124
Multiplication, 74
Multiply by 3, 91
Reverse encryption, 77
Seven-segment decoder, 187
Square root, 181, 182

Program Counter (PC), 48, 57, 66, 66, 86,
105, 170

Programming model, 58, 89

R S latch, see Latch, R S
Read cycle, 83
Register, 33–40

Counting, 38
Register file, 40
Register transfer language (rtl), 51
Reset

Interrupt mask, 88
Run time, see Execution time

Shift register, 36
Sign bit, see 2’s complement, Signed num-

bers
Sign extension, 100
Stack, 111, 171–193
Stack Pointer, 172
Stack Pointer (SP), 86, )135
Status register (SR), 36
Subroutine, 169–193

Nested, 171
Passing parameters to, 179
Recursive, 172
Transparent, 175–193
Void, 177

Switch bounce, 31

Testing
Bit, 119

2’s complement
Comparison, 129
Dividing by shifting, 11, 123
Number, 9–12, 59, 75, 106, 116
Overflow, 10, 11, 15, 25, 35, 129
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Signed Number, 9–12, 123

Word size
Byte (8), 3
Long-word (32), 3
Nybble (4), 3
Quad-word (64), 3
Word (16), 3

Write cycle, 83


