
[private | public] dim identifier {, identifier} as type

� Private – An optional keyword which ensures that a variable is only available from within the
module it is declared. Variables are private by default.

� Public – An optional keyword which ensures that a variable is available to other programs or

modules.

� Identifier – A mandatory variable name, which follows the standard identifier naming

conventions

� Type – A mandatory data type. Supported types include boolean, bit, byte, word, longword,

shortint, integer, longint, float, string, char and structures

A variable holds data on which a program operates. Unlike constants, variable values can change
dynamically when the program is executing. A variable is like a box, which holds values. You have
to tell the compiler in advance the type of variable that will fit into the box.

You can declare variables one at a time, like this

dim Index as byte

dim Range as byte

or you can declare them as a list,

dim

Index as byte,

 Range as byte

In the examples opposite, the variables are of the same type (a byte). You could therefore use the

following syntax

dim Index, Range as byte

As mentioned previously, the type defines what values can fit into a variable. It's important to
note that data RAM on a PIC™ microcontroller is substantially less than the code memory used to

store your program. In addition, program operations on large data types (for example, long words)
will generate more underlying ASM code.

The PIC™ 18 series is an 8 bit microcontroller, so it makes sense to keep your types limited to

Variables

Type Bit Size Range

Boolean 1 True or False

Bit 1 1 or 0

Byte 8 0 to 255

Word 16 0 to 65535

LongWord 32 0 to 4294967295

ShortInt 8 -128 to 127

Integer 16 -32768 to 32767

LongInt 32 -2147483648 to 2147483647

Float 32 -1e37 to +1e38

Char 8 Single character

String Variable Multiple (up to 255) characters

Structure Variable Variable

Page 1 of 4Swordfish - Variable

12/19/2013mk:@MSITStore:C:\Program%20Files\Mecanique\SwordfishSE\Help\Swordfish.chm::/lr...

unsigned bytes if at all possible. For example, you may want to store a numeric value which ranges

from 0 to 200. In this case, a byte type would be ideal, as this can store numbers in the range 0 to
255 and only takes 8 bits of data RAM. Of course, the compiler can easily accommodate larger
types, but choosing the right variable type is essential not only in terms of saving precious data
RAM, but also in terms of the size and efficiency of the ASM code produced.

The types bit, byte, word, longword, shortint, integer, longint and float clearly outline the numeric
ranges for any variables declared using them.

The following sections discuss in more detail boolean, string and char.

Boolean Types

The boolean data type enables you to represent something as true or false. It cannot hold a
numeric value. The right hand side of an assignment expression must always evaluate to true or
false, or set directly by using the compilers predefined boolean constants. For example,

dim OK as boolean

OK = true

Booleans are particularly useful when dealing with flow control statements, such as if…then or
iteration statements, such as while…wend or repeat…until. A Boolean data type can
significantly contribute to the readability of a program, making code sequences appear more logical
and appropriate.

For example, the following code shows how you could set a bit flag, if the value of index falls within
10 and 20,

dim Index as byte

dim DataInRange as bit

if Index >= 10 and Index <= 20 then

DataInRange = 1

else

DataInRange = 0

endif

However, if we change the flag DataInRange to a boolean type, we could write the code like this,

dim Index as byte

dim DataInRange as boolean

DataInRange = Index >= 10 and Index <= 20

In the first example, testing index using if…then evaluates to true or false. In the second
example, DataInRange is a boolean type, so we can dispense with the if…then statement

altogether and assign the result directly to DataInRange.

In addition, because DataInRange is a boolean type, we don't have to explicitly test it when
encountering any conditional expressions. Remember, a boolean can only be true or false, so we

Unlike many other BASIC compilers, Swordfish does allow variables of different types
to be used in the same expression. For example, an unsigned byte can be multiplied
by an integer and assigned to a variable declared as floating point. However, this
practice should be avoided if possible, as the code automatically generated by the
compiler needs to convert one type into another in order to compute the correct

result. This will result in a larger code footprint than would otherwise be generated if
all of the variables used had been declared as the same type.

Page 2 of 4Swordfish - Variable

12/19/2013mk:@MSITStore:C:\Program%20Files\Mecanique\SwordfishSE\Help\Swordfish.chm::/lr...

simply write something like this,

if not DataInRange then

// output an error

endif

In this example, if DataInRange is false, then the if…then statement will evaluate to true (the

boolean operator not inverts the false into a true) and an error is output.

String and Char Types

A string variable can be described as a collection of character elements. For example, the string
"Hello" consists of 5 individual characters, followed by a null terminator. The Swordfish compiler
uses a null terminator (0) to denote the end of a string sequence. A string variable can be declared
and initialized in the following way,

dim MyString as string

MyString = "Hello World"

By default, the compiler will allocate 24 bytes of RAM for each string declared. That is, you can
assign a string sequence of up to 23 characters, plus one for the null terminator.

In the previous example, "Hello World" is 11 characters long. Assuming MyString will never get
assigned a sequence larger than this, we can save some RAM storage by explicitly specifying the
size of the string after the
string keyword, like this

// 11 characters + null terminator...

dim MyString as string(12)

Swordfish enables you to specify string sizes of up to 256 bytes, which equates to 255 individual

character elements. Unlike strings, a char type can only hold one single character. A char variable
can be declared and initialized in the following way,

dim MyChar as char

MyChar = "A"

The compiler supports the "+" operator to concatenate (join) two strings.
For example,

dim StrA, StrB, StrResult as string

StrA = "Hello"

StrB = "World"

StrResult = StrA + " " + StrB

Will result in StrResult being set to "Hello World". The two relational operators = (equal) and <>
(not equal) are also supported for string comparisons. For example,

if StrA = StrB then

USART.Write("Strings are equal!")

It is extremely important that string variables are declared with enough character
elements to support the runtime operation of your program. Failure to do so will

certainly result in problems when your code is executing. For example, concatenating
(joining) two strings that contain 20 characters each will require a destination string
that has reserved 41 elements (2 * 20, + 1 line terminator).

Page 3 of 4Swordfish - Variable

12/19/2013mk:@MSITStore:C:\Program%20Files\Mecanique\SwordfishSE\Help\Swordfish.chm::/lr...

endif

if StrA <> StrB then

USART.Write("Strings are NOT equal!")

endif

You can also mix the concatenation operator with the supported relational operators, as shown in
the following example,

include "USART.bas"
dim StrA, StrB as string

SetBaudrate(br19200)

StrA = "Hello"
StrB = "World"

if StrA + " " + StrB = "Hello World" then
USART.Write("Strings are equal!", 13, 10)

endif

The compiler can also read or write to a single string element by indexing it in the following way,

StrResult(5) = "_"

This would result in "Hello World" being changed to "Hello_World". Note that the first character of a
string variable is located at 0, the second character at 1 and so on.

A useful compiler constant is null, which can be used to set, or tested for, a string null terminator.

In the example overleaf, the length of a string is computed and output via the microcontroller’s
hardware USART.

include "USART.bas"
include "Convert.bas"

dim Str as string
dim Index as byte
SetBaudrate(br19200)
Str = "Hello World"

Index = 0
while Str(Index) <> null
 inc(Index)

wend

USART.Write("Length is ", DecToStr(Index), 13, 10)

It should be noted that the compiler constant null is logically equivalent to "" (an empty string)

An alternative way to assign a single character to a string element or char variable is
by using the # notation. For example, the underscore character ("_") can be
represented by the ASCII number 95 decimal. We could therefore write StrResult =
#95. This technique is particularly useful when dealing with non white space

characters, such as carriage returns and line feeds.

Page 4 of 4Swordfish - Variable

12/19/2013mk:@MSITStore:C:\Program%20Files\Mecanique\SwordfishSE\Help\Swordfish.chm::/lr...

