ENESANS Programming Manual — Read Me

ZMOD4410 - Indoor Air Quality Sensor Platform

1. Introduction

The ZMOD4410 Gas Sensor Module is highly configurable to meet various application needs. This document
describes the general program flow to set up ZMOD4410 Gas Sensor Modules for gas measurements in a
customer environment. The corresponding firmware package is provided on the Renesas ZMOD4410 product
page under the Downloads section.

This document also describes the function of example code provided as C code, which can be executed using
the ZMODA4410 evaluation kit (EVK) and with Arduino hardware. For instructions on assembly, connection, and
installation of the EVK hardware and software, see the ZMOD4410 Evaluation Kit User Manual on the
ZMODA4410 EVK product page.

The ZMOD4410 has several modes of operation:

= IAQ 2" Gen — The embedded artificial intelligence (Al) algorithm (“iaq_2nd_gen”) derived from machine
learning outputs total volatile organic compounds (TVOC), equivalent ethanol (EtOH) concentration, estimated
carbon dioxide level (eC0O2), and a rating for the indoor air quality (IAQ). This method of operation is for highly
accurate and consistent sensor readings. This is the recommended operation mode for IAQ.

= IAQ 2" Gen Ultra Low Power — The embedded artificial intelligence (Al) algorithm (“iaq_2nd_gen_ulp”)
derived from machine learning outputs total volatile organic compounds (TVOC), equivalent ethanol (EtOH)
concentration, estimated carbon dioxide level (eC0O2), and a rating for the indoor air quality (IAQ). This
method of operation offers a much lower power consumption while keeping accurate and consistent sensor
readings.

= QOdor — Sets a control signal based on an Air Quality and outputs the Air Quality Change.

= Sulfur Odor — This semi-selective detection method for gas species allows a discrimination between sulfur
odors in the air. Odors are classified as “Acceptable” and “Sulfur” with an intensity level.

= |AQ 1% Gen in Continuous Operation or Low Power Operation (Legacy)

Recommendation: Before using this document, read the ZMOD4410 Datasheet and corresponding
documentation on the ZMOD4410 product page.

R36US0001EU0109 Rev.1.09 RENESAS Page 1
Dec.2.21 © 2021 Renesas Electronics

http://www.renesas.com/zmod4410
http://www.renesas.com/zmod4410-evk

ZMOD4410 Programming Manual — Read Me

Contents
O [014 o Yo 1U o {0 Y o PRSP 1
2. Requirements on Hardware to Operate ZMODAAL0ccuueeeiiiiiee ittt e e nibeee e 3
3. Structure Of ZIMODZAL0 FilMWEIE....ccoiuiiieiiteieeeiiteee ettt e steeee s sbee e e s sbeeeesasbeeeesabeeeessnaaeeeesabteeesanneeeesanneeeens 5
4. Description of the Programming EXAMPIESciici ittt e e e e s s e e e e e e e snnrnreeeaeeeennnnes 6
4.1 1AQ 2™ Gen EXAMPIE FOr EVK.....ocuiiiiiieceiecie ettt ettt ettt e ettt te et teeteeetesteeaaesteebeenteabeeneenre e 6
4.2 1AQ 2" Gen ULP EXAMPIE fOr EVK.....ciuiiieieiiciiciicie sttt sttt st ss e ena s 7
0C T @ o [o] g == L] o1 [0 o B AV PSSP 8
4.4 Sulfur Odor EXamPpPle fOr EVK ..ottt a et a st e e st e e s nbne e e e annns 9
T AN (o 011 To =T a] o] 1= SR PPEPR 10
4.6 OptioNal LiDrary: CIEANINGceiia ittt e e e e e e et be e e e a2 e e s sttt eeeeaaaeaaanbbeaeeaaeeeaaanne 14
5. Adapting the Programming Example for Target Hardware ... 15
5.1 System Hierarchy and Implementation StEPSccoviicciiiieiie e 15
LI A (o] g O oo [T S TP PETTT PO 16
5.3 Interrupt Usage and Measurement TIMINGccieeeuiiiiurieerieesiisiieeieeeeessessssseeeeeeessssnsnsneesssessssnnsssseees 18
5.4 Adaptions t0 FOIOW CO0 StANUAITccoei ittt e e et e e e e e e s bbb e e e e e e e e e snnnseeeas 19
5.5 How to Compile fOr EVK HAINOWAIEueiiiiiiiieeiiiee ettt 20
LT ==Y 1] 10 TS 0 PR 21
Figures
Figure 1. File Overview for ZMODA4L10 FilMWEAIEcccuuuuieeeeeteeeiitieieeeaeessssstteeeeeaeessasssseeeeaaeesssasssseeeeeesssansssseeeeens 5
(o [IS Vi) (= 4 T =T = 1o 0 SRR 15
Figure 3. MEaSUIEMENT SEOUENCEScoiiiitiiaeiitiieeeaittee e e ettt e e ettt e e s bb e e e e ettt e e s et bt e e s aabbe e e s aabbeeeeaabbeeesanbbeeesanbeeeeennnee 18
Tables
Table 1. Exemplary Memory Footprint of ZMOD4410 Implementation on a Renesas RL78-G13 MCU.................. 3
Table 2. Targets and Compilers Supported by Defaultovriiiiie i 4
Table 3. IAQ 2" Gen Program FIow (Cont. 0N NEXt PAgE)........ccecieiuiiiieieitecteeeie ettt ete et te et re e eae v, 6
Table 4. IAQ 2" Gen ULP Program FIow (Cont. 0N NEXt PAGE).......cccvieeeeieieeiteiteeeeeresreeeeestesseesresreeeesresseesnsssens 7
Table 5. OdOr Program FIOWooooo ittt e e e sttt e e e e e e s s a b bbe e e e e e e e e aabbbbeeeeaaeeeaanbbsbeeeaaaaaaanns 8
Table 6. SUIfur OdOr Program FIOWeio ittt e st e e ettt e e s abb et e e s abbe e e e s abbeeeesanneeeeaas 9
Table 7. Error Codes (Cont. 0N NEXE PAGE) ..eciiiiiiiiiiiiiiie ettt s e e e e e s e st e e e e e e e s s sant b e e e e e e e e s sansnnreeeaeaeeaaans 16
R36US0001EU0109 Rev.1.09 RENESAS Page 2

Dec.2.21

ZMOD4410 Programming Manual — Read Me

2. Requirements on Hardware to Operate ZMOD4410

To operate the ZMODA4410, customer-specific hardware with a microcontroller unit (MCU) is needed. Depending
on the sensor configuration and on the hardware itself, the requirements differ and the following minimum

requirements are provided as an orientation only:

= 12 to 30 kB program flash for ZMOD4410-related firmware code (MCU architecture and compiler dependent),

see Table 1

= 1kB RAM for ZMOD4410-related operations (see Table 1)

= Capability to perform I2C communication, timing functions, and floating-point instructions

= The algorithm functions work with variables saved in background and need memory retention between each

call

Table 1. Exemplary Memory Footprint of ZMOD4410 Implementation on a Renesas RL78-G13 MCU

IAQ 2" Gen IAQ 2" Gen ULP Odor Sulfur Odor
Program flash usage in kB 15.8 13.8 8.7 9.7
RAM usage (required variables) 332 308 168 256
in bytes
RAM. usage (stack SIZ? for library 500 300 64 268
functions, worst case) in bytes

The ZMOD4410 firmware can be downloaded from the ZMOD4410 product page. To get access to the firmware
a Software License Agreement must be accepted. The firmware uses floating-point calculations with various
integer and floating-point variables. A part of the firmware is comprised of precompiled libraries for many
standard targets (microcontrollers), as listed in the following table.

R36USO001EU0109 Rev.1.09
Dec.2.21

RENESAS

Page 3

http://www.renesas.com/zmod4410

ZMOD4410 Programming Manual — Read Me

Table 2. Targets and Compilers Supported by Default

Target

Compiler

Arduino (Cortex-M0+, ATmega32)

arm-none-eabi-gcc (Arduino IDE)

avr-gcc (Arduino IDE)

arm-none-eabi-gcc (all others)

Arm Cortex-A
iar-ew-arm (IAR Embedded Workbench)
armcc (Keil MDK)
armclang (Arm Developer Studio)

Arm Cortex-M arm-none-eabi-gcc (all others)

iar-ew-arm (IAR Embedded Workbench)

iar-ew-synergy-arm (IAR Embedded Workbench)

Arm Cortex-R4

arm-none-eabi-gcc (all others)

iar-ew-arm (IAR Embedded Workbench)

xtensa-esp32-elf-gcc

Espressif ESP xtensa-esp32s2-elf-gcc
xtensa-Ix106-elf-gcc
Intel 8051 iar-ew-8051 (IAR Embedded Workbench)

Microchip ATmega32 and AVR

avr-gcc (AVR-Studio, AVR-Eclipse, MPLAB, Atmel Studio)

Microchip PIC

xc8-cc (MPLAB)

Raspberry Pi

arm-linux-gnueabihf-gcc

Renesas RL78

ccrl (e2studio, CS+)

iar-ew-rl (IAR Embedded Workbench)

rI78-elf-gcc

Renesas RX

ccrx (e3studio, CS+)

iar-ew-rx (IAR Embedded Workbench)

rx-elf-gcc

Texas Instruments MSP430

msp430-elf-gcc

Windows

mingw32

Note: For other platforms (e.g., other Linux platforms) and other Arduino boards, contact Renesas Technical

Support.

R36USO001EU0109 Rev.1.09
Dec.2.21

RENESAS

Page 4

ZMOD4410 Programming Manual — Read Me

3. Structure of ZMOD4410 Firmware

To operate the ZMOD4410 and use its full functionality, five code blocks are required as displayed in Figure 1:

= The “Target Specific 12C and Low-Level Functions” block is the hardware-specific implementation of the 1>C
interface. This block contains read and write functions to communicate with the ZMOD4410 and a delay
function. If the Renesas EVK is used, files for the EVK HiCom Communication Board are provided with the
ZMOD4410 firmware packages. Using the user’'s own target hardware requires implementing the user’s
target-specific 1°C and low-level functions (this is highlighted in light blue in Figure 1).

= The “Hardware Abstraction Layer (HAL)” block contains hardware-specific initialization and de-initialization
functions. If the Renesas EVK is used, files for the EVK HiCom Communication Board are provided with the
ZMOD4410 firmware packages. They need to be adjusted to the target hardware of the user. The HAL is
described in the document ZMOD4xxx-API.pdf, which is included in the firmware packages.

= The “Application Programming Interface (API)” block contains the functions needed to operate the
ZMOD4410. The API should not be modified! A detailed description of the API is located in the document
ZMODA4xxx-APl.pdf, which is included in the firmware packages.

= The “Programming Example” block provides a code example as main.c file that is used to initialize the
ZMODA4410, perform measurements, display the data output for each specific example, and start the optional
cleaning function. Each example contains one configuration file (zmod4410_config_xxx.h) that should not be
modified! More information is provided in Description of the Programming Examples.

= The “Gas Measurement Libraries” block contains the functions and data structures needed to calculate the
firmware-specific results for the Indoor Air Quality related parameters, such as IAQ, TVOC, EtOH,
eCO2 (IAQ 2™ Gen and IAQ 2™ Gen ULP) or Air Quality Change (Odor), or Sulfur Odor result. These
algorithms cannot be used in parallel. This block also contains the optional cleaning. The libraries are
described in more detail in the documents ZMOD4410-IAQ_2nd_Gen-lib.pdf,
ZMOD4410-IAQ_2nd_Gen_ULP-lib.pdf, ZMOD4410-Odor-lib.pdf, and ZMOD4410-Sulfur_Odor-lib.pdf. All of
these files are part of the downloadable firmware packages.

To avoid naming conflicts, all API function names start with the prefix “zmod4xxx” in the ZMOD4410 code. This
naming applies to all ZMOD4410 operation modes. The Arduino examples have a similar structure, but have
some other features that facilitate operation with the Arduino board (see Arduino Examples).

Hardware Abstraction Layer Application Progr i Progr i pl Gas Measurement Libraries
(HAL) Interface (API)
General Files: <«—»| Files: <«—»| Filesfor IAQ 2nd Gen: <« Files for IAQ 2nd Gen:
zmod4xxx_hal.h Zmod4xxx.c main.c iaq_2nd_gen.h lib_iaq_2nd_gen.lib
T zmod4xxx.h zmod4410_config_iag2.h e e
EVK Low Level | EVK 12C EVK specific files: zmodéxxx_types.h ZMOD4410-1AQ_2nd_Gen-lib.pdf
! hal_hicom.c
i ! Eil | ‘ Documentation:
Files: | Files: hal_hicom.h 2ocumentation:) y
hicom.c I hicom_i2c.c N ZMOD4xxx-APl.pdf Eiles for IAQ_2nd_Gen_ULP: Files for 1AQ 2nd Gen ULP: .
hicom.h | hicom_i2ch Documentation: main.c o iag_2nd_gen_ulp.h lib_iag_2nd_gen_ulp.lib
! ZMOD4xxx-API.pdf zmod4410_config_iaq2_ulp.h Documentation:
! ZMOD4410-IAQ_2nd_Gen_ULP-lib.pdf
[Renesas Evaluation Kit }
Files for Odor: Eiles for Odor:
main.c odor.h lib_odor.lib
P zmod4410_config_odor.h Documentation:
{ } ZMO0D4410-Odor-lib.pdf
! |
L Target Specific 12C and | Files for Sulfur Odor: Files for Sulfur Odor:
: Low-Level Functions "‘_' main.c sulfur_odor.h lib_sulfur_odor.lib
'[Customer-Specific Microcontroller]] 2mod4410_config_sulfur_odor.h Documentation: ;
| | ZMOD4410-Sulfur_Odor-lib.pdf
|
|
! |

oo oo oo ¢ Optional Libraries:
zmod4xxx_cleaning.h
lib_zmod4xxx_cleaning.lib

Figure 1. File Overview for ZMOD4410 Firmware

All files are part of zipped firmware packages available on the ZMOD4410 product page under the Downloads
section. Note that not all configurations and optional libraries are available for all operation methods; the
individual library documentation will provide detailed insight on possible settings.

R36US0001EU0109 Rev.1.09 RENESAS Page 5
Dec.2.21

http://www.renesas.com/zmod4410

ZMOD4410 Programming Manual — Read Me

4. Description of the Programming Examples

This section describes the structure of the programming examples and the steps needed to operate the sensor
module. In the examples, the ZMOD4410 is initialized, the measurement is started, and measured values are
outputted. They are intended to work on a Windows® computer in combination with the Renesas Gas Sensor
EVK but can be easily adjusted to operate on other platforms (see “Adapting the Programming Example for
Target Hardware”). To run each example using the EVK without further configuration, start the files
zmod4410_xxx_example.exe, which are included in the firmware packages. Arduino examples will work for the
described Arduino hardware (see “Arduino Examples”).

4.1

IAQ 2"d Gen Example for EVK

The main.c file of the example contains the main program flow. First, the target-specific initializations are
performed. The ZMODA4410 is configured by reading device parameters as well as Final Module Test
parameters from the sensor’s non-volatile memory (NVM) and initializing it to run a sequence of different
operating temperatures. An endless measurement loop continuously checks the status of the ZMOD4410 and
reads its data. The raw data is subsequently processed, and the TVOC, EtOH, IAQ, eCO2 algorithm results are
calculated with the embedded neural net machine learning algorithm. All values are printed in the command line
window. To stop the loop, press any key, which releases the hardware and stops the program. For more
information, see the example code.

Note: The blue colored lines in the following table can be run in an endless loop with polling or interrupt usage.

Table 3. IAQ 2" Gen Program Flow (Cont. on Next Page)

Line Program Actions Notes APl and Algorithm Functions
1 Reset the sensor. Before configuring the sensor, reset the -
sensor by powering it off/on or toggling the
reset pin.
2 Read product ID and configuration This step is required to select the correct zmod4xxx_read_sensor_info
parameters. configuration for the sensor.
3 Calibration parameters are determined | This function must be called after every zmod4xxx_prepare_sensor
and measurement is configured. startup.
4 Initialize the IAQ (TVOC, EtOH, eCO2) | Gas Algorithm Library function. Initialize again init_iagq_2nd_gen
algorithm. after 48 hours of sensor operation.
5 Start the measurement. One measurement is started. zmod4xxx_start_measurement
6 Read status register. Wait until the measurement is done. This will zmod4xxx_read_status
also be signaled on the interrupt pin with a
falling signal (edge detection needed).
7 Check if an error occurred. Check for an access conflict during register zmod4xxx_check_error_event
read-out and for a Power-On Reset.
8 Read sensor ADC output. Result contains raw sensor output. zmod4xxx_read_adc_result
9 Algorithm calculation. Calculate current MOx resistance Rmox, 1AQ, calc_iagq_2nd_gen
TVOC, EtOH and eCO2. First 60 samples
(3 minutes) are used for minimal, hard-coded
sensor stabilization. Actual stabilization can
take longer (up to 48 hours).

R36USO001EU0109 Rev.1.09
Dec.2.21

RENESAS

Page 6

ZMOD4410 Programming Manual — Read Me

Line Program Actions

Notes

APl and Algorithm Functions

10 | Delay (1990ms).

This delay is necessary to keep the right
measurement timing and to call a
measurement every 3 seconds with a
maximum deviation of 5%.

11 Start next measurement.

One measurement is started.

zmod4xxx_start_measurement

4.2

IAQ 2"d Gen ULP Example for EVK

The main.c file of the example contains the main program flow. First, the target-specific initializations are
performed. The ZMODA4410 is configured by reading device parameters as well as Final Module Test
parameters from the sensor’s non-volatile memory (NVM) and initializing it to run a sequence of different
operating temperatures. An endless measurement loop continuously checks the status of the ZMOD4410 and
reads its data. The raw data is subsequently processed, and the TVOC, EtOH, IAQ, eCO2 algorithm results are
calculated with the embedded neural net machine learning algorithm. All values are printed in the command line
window. To stop the loop, press any key, which releases the hardware and stops the program. For more

information, see the example code.

Note: The blue colored lines in the following table can be run in an endless loop with polling or interrupt usage.

Table 4. IAQ 2" Gen ULP Program Flow (Cont. on Next Page)

Line Program Actions

Notes

APl and Algorithm Functions

1 Reset the sensor.

Before configuring the sensor, reset the
sensor by powering it off/on or toggling the
reset pin.

2 Read product ID and configuration
parameters.

This step is required to select the correct
configuration for the sensor.

zmod4xxx_read_sensor_info

3 | Calibration parameters are determined
and measurement is configured.

This function must be called after every
startup.

Zmod4xxx_prepare_sensor

4 Initialize the IAQ (TVOC, EtOH, eCO2)
algorithm.

Gas Algorithm Library function. Initialize again
after 48 hours of sensor operation.

init_iaq_2nd_gen_ulp

5 Start the measurement.

One measurement is started.

zmod4xxx_start_measurement

6 Delay ().

Wait until the measurement is done. This is
the first delay. It should be longer than
1010 ms.

7 Read status register.

Check if the measurement is done. This will
also be signaled on the interrupt pin with a
falling signal (edge detection needed).

zmod4xxx_read_status

8 Check if an error occurred.

Check for a Power-On Reset.

zmod4xxx_check_error_event

9 Read sensor ADC output.

Result contains raw sensor output.

zmod4xxx_read_adc_result

10 | Check if an error occurred.

Check for errors during ADC readout.

zmod4xxx_check_error_event

R36USO001EU0109 Rev.1.09
Dec.2.21

RENESAS

Page 7

ZMOD4410 Programming Manual — Read Me

Line

Program Actions

Notes

APl and Algorithm Functions

11

Algorithm calculation.

Calculate current MOx resistance Rmox, 1AQ,
TVOC, EtOH and eCO2. Relative humidity (in
% RH) and temperature values (in °C) need to
be passed as arguments. First 10 samples
(15 minutes) are used for minimal, hard-coded
sensor stabilization. Actual stabilization can
take longer (up to 48 hours).

calc_iaq_2nd_gen

12

Delay ().

This second delay is necessary to keep the
right measurement timing. The sum of the first
and second delay should amount 90 seconds
to call a measurement every 90 seconds with
a maximum deviation of 5%.

4.3 Odor Example for EVK

The main.c file of the example contains the main program flow. First, the target-specific initializations are
performed in the example. The ZMOD4410 is configured by reading device parameters as well as Final Module
Test parameters from the sensor’s non-volatile memory (NVM) and initializing it to run at its operating
temperature. An endless measurement loop continuously checks the status of the ZMOD4410 and reads its
data. The raw data is subsequently processed and the Odor control state and Air Quality Change algorithm
results are calculated. All values are printed in the command line window. To stop the loop, press any key, which
releases the hardware and stops the program. For more information, see the example code.

Note: The blue colored lines in the following table can be run in an endless loop with polling or interrupt usage.

Table 5. Odor Program Flow

Line

Program Actions

Notes

APl and Algorithm Functions

Reset the sensor.

Before configuring the sensor, reset the
sensor by powering it off/on or toggling the
reset pin.

Quality Change conc_ratio. First 15 samples
(30 seconds) are used for minimal, hard-
coded sensor stabilization. Actual stabilization
can take longer (up to 48 hours).

2 Read product ID and configuration This step is required to select the correct zmod4xxx_read_sensor_info
parameters. configuration for the sensor.
3 | Calibration parameters are determined | This function must be called after every zmod4xxx_prepare_sensor
and measurement is configured. startup.
5 Start the measurement. Measurement runs in an endless loop. zmod4xxx_start_measurement
6 Read status register. Wait until the measurement is done. This will zmod4xxx_read_status
also be signaled on the interrupt pin with a
falling signal (edge detection needed).
7 Read sensor ADC output. Result contains raw sensor output. zmod4xxx_read_adc_result
8 Get the MOx resistance value. Get the MOXx resistance value. zmod4xxx_calc_rmox
9 Algorithm calculation. Calculate Odor control state cs_state and Air calc_odor

R36USO001EU0109 Rev.1.09
Dec.2.21

RENESAS

Page 8

ZMOD4410 Programming Manual — Read Me

4.4 Sulfur Odor Example for EVK

The main.c file of the example contains the main program flow. First, the target-specific initializations are
performed. The ZMOD4410 is configured by reading device parameters as well as Final Module Test
parameters from the sensor’s non-volatile memory (NVM) and initializing it to run a sequence of different
operating temperatures. An endless measurement loop continuously checks the status of the ZMOD4410 and
reads its data. The raw data is subsequently processed, and the Sulfur Odor intensity and classification results
are calculated with the embedded neural net machine-learning algorithm. All values are printed in the command
line window. To stop the loop, press any key, which releases the hardware and stops the program. For more

information, see the example code.

Note: The blue colored lines in the following table can be run in an endless loop with polling or interrupt usage.

Table 6. Sulfur Odor Program Flow

Line Program Actions Notes APl and Algorithm Functions
1 Reset the sensor. Before configuring the sensor, reset the -
sensor by powering it off/on or toggling the
reset pin.
2 Read product ID and configuration This step is required to select the correct zmod4xxx_read_sensor_info
parameters. configuration for the sensor.

3 Calibration parameters are determined | This function must be called after every
and measurement is configured. startup.

zmod4xxx_prepare_sensor

4 Initialize the IAQ (TVOC, EtOH, eCO2) | Gas Algorithm Library function. Initialize again

init_sulfur_odor

also be signaled on the interrupt pin with a
falling signal (edge detection needed).

algorithm. after 48 hours of sensor operation.
5 Start the measurement. One measurement is started. zmod4xxx_start_measurement
6 Read status register. Wait until the measurement is done. This will zmod4xxx_read_status

7 Read sensor ADC output. Result contains raw sensor output.

zmod4xxx_read_adc_result

8 | Algorithm calculation. Calculate current MOXx resistance Rmox,
Sulfur Odor intensity, and classification. First
60 samples (3 minutes) are used for minimal,
hard-coded sensor stabilization. Actual
stabilization can take longer (up to 48 hours).

calc_sulfur_odor

9 Delay (1990ms). This delay is necessary to keep the right
measurement timing and call a measurement
every 3 seconds with a maximum deviation of
5%.

10 | Start next measurement. One measurement is started. zmod4xxx_start_measurement
R36US0001EU0109 Rev.1.09 RENESAS Page 9

Dec.2.21

ZMOD4410 Programming Manual — Read Me

4.5 Arduino Examples

To set up a firmware for an Arduino target, Renesas provides the above-mentioned EVK examples also as
Arduino examples. These examples have a similar structure as shown in Figure 1 but with a HAL dedicated for
Arduino, an Arduino-compatible structure, and Arduino-specific files. One example supports SAMD 32-bit ARM
Cortex-MO+ based Arduino-Hardware included in the SAMD Boards library. For example:

= Arduino Zero/MKR Zero

= Arduino MKR1000

= Arduino Nano 33 IoT

= Arduino MO

= etc.

The other example supports AVR ATmega32 based Arduino-Hardware included in the AVR Boards library. For
example:

= Arduino Uno Rev3 (SMD)

= Arduino Nano

= Arduino Micro

= Arduino Leonardo

= etc.

The Program Flows correspond to those displayed in the EVK examples. To get the Arduino example started,
complete the following steps (exemplary shown for SAMD 32-bit ARM Cortex-M0+ based boards):

1. Connect the ZMOD4410 to the Arduino board. To connect the EVK Sensor Board, check the pin
configuration on connector X1 in the ZMOD4410 EVK User Manual on the ZMOD4410 EVK product page.

2. Go to the Arduino example path (for example, [...]\Documents\Arduino\libraries) and check if a ZMOD4410
example exists. Old example folders must be deleted.

3. Open Arduino IDE. Select “Sketch > Include Library > Add .ZIP library”.

@ sketch_mar29a | Arduino 1.8.13
File Edit Sketch Tools Help Y . N N)

Verify/Compile Ctrl+R
Upload Ctrl+U
sketen Upload Using Programmer Ctrl+Shift+U
void sd Export compiled Binary Ctrl+Alt+S

/7 B Show Sketch Folder Ctrl+K

Include Library 3 &
3 Add File. Manage Libraries... Ctrl+Shifts
void loop() Add ZIP Library...
// put your main code here, to run repes

Contributed libraries

) Adafruit BuslO
Adafruit Cireuit Playground
Adafruit GFX Library
Adafruit GPS Library
Adafruit ILIg341
Adafruit LED Backpack Library
Adafruit STMPE&10
Adafruit SleepyDog Library
Adafruit TouchScreen
Adafruit Zero DMA Library
Adafruit Zero FFT Library
Adafruit Zero PDM Library
Bridge
EEPROM
Esplora
Ethernet
Firmata
GSM
HID
Keyboard
LiquidCrystal
Mouse
RTClib
Renesas_ZMOD#4410_|AQ_2nd_Gen_Example

I Foreses ZMODAS10_0AQ, 20 Gen Exampie N

4. Select the Renesas_ZMOD4410- xxx_ Example_Arduino.zip file.

R36US0001EU0109 Rev.1.09 RENESAS Page 10
Dec.2.21

http://www.renesas.com/zmod4410-evk

ZMOD4410 Programming Manual — Read Me

5. Select “File > Examples > Corresponding examples (Renesas_ZMOD4410_ xxx _Example_Arduino).” A
new Arduino IDE window opens automatically with examples main file.

@ sketch_mar29a | Arduino 1.8.13

File Edit Sketch Tools Help

New Cirl+N
Open... Ctrl+O
Open Recent

Sketchbook

Examples

Close Ctrl+W
Save Cirl+S

Save As.. Ctrl+Shift+S
Page Setup Cirl+Shift+P
Print Ctrl+P
Preferences Ctrl+Comma
Quit Crl+Q

Ethernet
Firmata

GSM
LiquidCrystal
Robot Control
Robot Motor
SD
SpacebrewYun
Stepper
Temboo

TFT

WiFi

Examples for Arduino Uno
EEPROM

SoftwareSerial

SPI

Wire

Examples from Custom Libraries
Adafruit BuslO

Adafruit Circuit Playground
Adafruit GFX Library

Adafruit GPS Library

Adafruit ILI9341

Adafruit LED Backpack Library
Adafruit SleepyDog Library
Adafruit STMPE610

Adafruit TouchScreen
Adafruit Zero FFT Library

Renesas_ZMOD4410_IAQ_2nd_Ger iag_2nd_gen

Renesas_ZMOD4510_0AQ_2nd_Gt
RTClib

e

R36USO001EU0109 Rev.1.09

Dec.2.21

RENESAS

Page 11

ZMOD4410 Programming Manual — Read Me

6. Install the “Arduino SAMD (32-bit ARM Cortex-M0+)” Boards library under “Tools > Board > Board
Manager”. If it already exists, skip this step. Type “Arduino SAMD Boards” in the search field and click
“Install” button in “Arduino SAMD (32-bit ARM Cortex-M0+)” field. This step is not required for AVR
ATmega32 based boards because the AVR Boards library is installed by default.

=] | Arduine 1.8.13

File Edit Sketch Tools Help
Auto Format Ctrl+T
Archive Sketch
Fix Encoding & Reload
Manage Libraries... Ctrl+Shift+]
Serial Monitor Ctrl+Shift+M
Serial Plotter Ctrl+Shift+L

WiFi101 / WiFiNINA Firmware Updater

Board: "Arduino Uno” Boards Manager...
Port Arduino Yun
Get Board Info ® Arduino Uno

Arduino Duemilanove or Diecimila
Arduino Nano

s Arduino Mega or Mega 2560
Arduino Mega ADK

Arduino Leonardo

Arduino Leonardo ETH

Arduino Micro

Programmer: “AVRISP mkil”
Burn Bootloader

Arduino Esplora
Arduino Mini

Arduino Ethernet
Arduino Fio

Arduino BT

LilyPad Arduino USB
LilyPad Arduino
Arduino Pro or Pro Mini
Arduino NG or older
Arduino Robot Control
Arduino Robot Motor
Arduino Gemma
Adafruit Circuit Playground
Arduino Yan Mini
Arduino Industrial 101
Linino One

I <o Uro Wi 60 /. Y —

@ Arduino 1.8.13
File Edit Sketch Tools Help

© Boards Manager X
i
Type |All | |samad
*| [Arduino SAMD Boards (32-bits ARM Cortex-M0+) ~
by Arduino
Boards included in this package:
Arduino MKR WiFi 1010, Arduino Zero, Arduino MKR1000, Arduino MKRZERO, Arduino MKR FOX 1200, Arduino MKR WAN 1300, Arduino MKR WAN
1210, Arduino MKR GSM 1400, Arduine MKR NB 1500, Arduina MKR Vidor 4000, Arduine Nano 33 IoT, Arduine MO Pro, Arduino MO, Arduina Tian,
Adafruit Circuit Playground Express.
Online Help
More Info
1.8.11 v [Install
Arduino SAMD Beta Boards (32-bits ARM Cortex-M0+)
by Arduino
Boards included in this package:
Arduino MKR Vidor 4000.
Online Help
Mare Info
Industruine SAMD Boards (32-bits ARM Cortex-M0+)
by Industruino
Boards included in this package:
Industruine D21G.
Online Help
More Info v
Close

R36US0001EU0109 Rev.1.09 RENESAS Page 12
Dec.2.21

ZMOD4410 Programming Manual — Read Me

7. Select the target board with e.g. “Tools->Board > Arduino SAMD (32-bits ARM Cortex-M0+) > Arduino

MKRZERO"

(2] | Arduino 1.8.13
File Edit Sketch Tools Help

Auto Format

Archive Sketch

Fix Encoding & Reload
Manage Libraries...
Serial Monitor

Serial Plotter

Board: "Arduino Uno"
Port
Get Board Info

‘WiFi101 / WiFiNINA Firmware Updater

Programmer. "AVRISP mkil*
Burn Bootloader

- ﬁ

Ctrl+Shift+l
Ctrl+Shift+M
Ctrl+Shift+L

Boards Manager.

Arduino AVR Boards

Arduino SAMD (32-bits ARM Cortex-MO0+) Boards Arduino Zero (Programming Port)

>

Arduino Zero (Native USB Port)
Arduino MKR1000

Arduino MKRZERO

Arduino MKR WiFi 1010

Arduino NANO 33 loT

Arduino MKR FOX 1200

Arduino MKR WAN 1300

Arduino MKR WAN 1310

Arduino MKR GSM 1400

Arduina MKR NB 1500

Arduino MKR Vidor 4000

Adafruit Circuit Playground Express
Arduino MO Pro (Programming Port)
Arduino MO Pro (Native USB Port)
Arduino MO

Arduino Tian

8. Compile the example with the “Verify” icon.

9. Select the connected port with “Tools -> Port -> (Connected Port)”. The correct COM-Port should show your

Arduino board name.
=

| Arduino 1.8.13

File Edit Sketch Tools Help

Auto Format

Aschive Sketch

Fix Encoding & Reload
Manage Libraries...
Serial Monitor

Senal Plotter

WIFI101 / WiFiNINA Firrmware Uipdater

Board: “Arduing MERZERD™
Port: "COM3T (Arduing MKRZERD)®
Get Board Info

Programmer
Burn Bootloader

Ctrl+T

Ctrl+Shift+1
Ctrl+Shift+M
Ctrl+5hift+L

3 Serial ports
COM3

¥ COM3T iArduino MKRZERO)
COM4
COMS

10. Load the program into target hardware with “Upload” icon.

@ | Arduino 1.8.13
File Edit Sketch Tools Help

R36USO001EU0109 Rev.1.09

Dec.2.21

RENESAS

Page 13

ZMOD4410 Programming Manual — Read Me

11. Check results with the Serial Monitor (Tools -> Serial Monitor).

@ | Arduine 1.8.13
File Edit Sketch Toolk Help

Auto Format Crl+T
Archive Sketch
Fix Encoding & Reload

Manage Libraries.. Ctrl+Shift+1
Serial Monitor [} Ctrl+Shift+M

4.6 Optional Library: Cleaning

The cleaning procedure is only recommended if the user believes there is a problem with his product
assembly (e.g., contamination from solder vapors). The cleaning process takes about 10 minutes and helps to
clean the metal oxide surface from assembly residues. Use zmod4xxx_cleaning library for this purpose. The
example code shows how to use the cleaning function. The MOXx resistance usually will be lower after the
cleaning procedure and slowly rises over time again. Although the sensor will immediately respond to any gas
concentration through a sophisticated baseline correction. An alternative might be to consider the package
option with assembly sticker (for more information, see Package Options in the ZMOD4410 Datasheet). The
cleaning function is blocking the microcontroller.

Important note: If needed, the cleaning procedure should be executed after PCB assembly during final
production test and can run only once during the lifetime of each module. The cleaning function is commented
out in the example so that it is not used by default.

R36USO001EU0109 Rev.1.09 RENESAS Page 14
Dec.2.21

ZMOD4410 Programming Manual — Read Me

5. Adapting the Programming Example for Target Hardware

5.1 System Hierarchy and Implementation Steps
The Renesas ZMOD4410 C API is located between the application and the hardware level.

Customer Application

Application-Specific Configuration of the Programming Example

ZMOD4410 API and Libraries (Algorithms)

Hardware Abstraction Layer (HAL)

Low-Level I2C Communication Low-Level Hardware Functions

Hardware Level (ZMOD4410 and Target)

Figure 2. System Hierarchy

The low-level I°C functions are implemented in the file hicom_i2c.c and are allocated in the hal_hicom.c (see
Figure 1) for the EVK hardware running on a Windows-based computer and the HiCom Communication Board.
To incorporate this programming example into a different hardware platform, the following steps are
recommended:

1. Establish I°C communication and conduct register test. Find detailed hints in the “12C Interface and Data
Transmission Protocol” section of the ZMOD4410 Datasheet.

2. Adjust the HAL files and hardware-specific init_hardware and deinit_hardware functions to the user’s target
hardware (compare with hal_hicom.c file). Set the device’s struct pointers read, write, and delay_ms in the
hardware initialization by using wrapper functions. The type definitions of the function pointers can be found
in zmod4xxx_types.h (see Figure 1) and an implementation example for the EVK in the hicom_i2c.c. The
functions read and write should point to the 1°C implementation of the hardware used. Test the delay_ms
function with a scope plot.

3. Use the example code without the algorithm library functions first. Therefore, comment out all library related
code (functions start with init_ and calc_). Test if the adapted example runs and
zmod4xxx_read_adc_results() function outputs changing ADC values in main measurement loop.

4. To apply the algorithms and get their output, include the corresponding library in the extra gas-algorithm-
libraries folder. Use precompiled libraries according to target hardware-platform and IDE/compiler (see
Table 2). Uncomment the corresponding functions (functions start with init_ and calc_).

R36US0001EU0109 Rev.1.09 RENESAS Page 15
Dec.2.21

ZMOD4410 Programming Manual — Read Me

5.2 Error Codes

All API functions return a code to indicate the success of the operation. If no error occurred, the return code is
zero. In the event of an error, a negative number is returned. The API has predefined symbols zmod4xxx_err for
the error codes defined in zmod4xxx_types.h. If an error occurs, check the following table for solutions. Note that
ZMOD API cannot detect a wrong 12C implementation. Each error may occur also with a wrong 12C
implementation.

Table 7. Error Codes (Cont. on Next Page)

Error o .
Code Error Description Solution
0 ZMOD4XXX_OK No error.
4 | ERRoR T our | e neen |
OF_RANGE '
- - range.
1. Try to reset the sensor by powering it off/on or toggling the reset pin.
. Afterwards start the usual Program Flow as shown in section "Description of
A previous . "
. the Programming Examples".
measurement is . . .
) 2. Check your 12C wrapper functions for 12C read and write. Best is to
ERROR_GAS_TIM | running that could . .
-2 analyze the voltage levels of the SDA/SCL line and check if they match the
EOUT not be stopped or . o . L "
pattern described in figure "I2C Data Transmission Protocol" in Datasheet.
sensor does not) . S
respond Do a register check as requested in section "I2C Interface and Data
pond. Transmission Protocol" in Datasheet. Check also multiple register write and
read out.
1. 1.If available, check the error code of your parent I2C functions used in the
ZMOD HAL for 12C_write/I2C_read implementation.
2. Check your 12C wrapper functions for 12C read and write. Best is to
3 | ERROR 12C 12C communication | analyze the voltage levels of the SDA/SCL line and check if they match the
- was not successful. | pattern described in figure "I2C Data Transmission Protocol" in Datasheet.
Do a register check as requested in section "I2C Interface and Data
Transmission Protocol” in Datasheet. Check also multiple register write and
read out.
1. Check the part number of your device. Go to the product webpage
www.renesas.com/zmod4410. Under the section "Downloads”, you find the
. right firmware for ZMOD4410. Replace it.
The Firmware 2. Check your 12C wrapper functions for I12C read and write. Best is to
ERROR_SENSOR | configuration used) Y PP . -
-4 analyze the voltage levels of the SDA/SCL line and check if they match the
_UNSUPPORTED does not match the . o . L "
sensor module pattern described in figure "I2C Data Transmission Protocol" in Datasheet.
' Do a register check as requested in section "I2C Interface and Data
Transmission Protocol" in Datasheet. Check also multiple register write and
read out.
-5 ERROR_CONFIG_ ;hzr\?allisdno Pomtet Not used
MISSING) . '
configuration.
R36US0001EU0109 Rev.1.09 RENESAS Page 16

Dec.2.21

http://www.renesas.com/zmod4410

ZMOD4410 Programming Manual — Read Me

R

read, write and/or
delay.

CE:::;; Error Description Solution
1. Check if the delay function is correctly implemented. You can use a scope
plot of a GPIO pin that is switched on and off. The delay function must
introduce delays in milliseconds.
2. Check measurement timing by comparing your flow with the Program Flow
invalid ADC results as shown in. section "I?escr.ipt.ion of the Programming Examples". Figure 3
due to a siill shqw graphically the right tmr}g. Make surg to start a result readc.)ut. aﬁgr
6 ERROR_ACCESS running active measurement phase finished. See hints on measurement timing in
_CONFLICT . section "Interrupt Usage and Measurement Timing".
measurement while . . .
results readout. 3. Check your 12C wrapper functions for IZQ read and ertg. Best is to
analyze the voltage levels of the SDA/SCL line and check if they match the
pattern described in figure "I2C Data Transmission Protocol" in Datasheet.
Do a register check as requested in section "I2C Interface and Data
Transmission Protocol" in Datasheet. Check also multiple register write and
read out.
1. Check stability of power supply and power lines for, e.g. cross-talk. After a
An unexpected Power-On reset the sensor lost its configuration and must be reconfigured. If
ERROR_POR_EV . . .
-7 ENT - - reset of the sensor | the host-controller did not lose ItS. memory dug to g restart start with
occurred. zmod4xxx_prepare_sensor function and continue in the Program flow as
shown in section "Description of the Programming Examples".
The maximum
numbers of
ERROR CLEANIN Clean'ing cyclesran | 1. Using cleaning to oftf.sn can harm the sensor module. The clegning cannot
-8 G - on this sensor. be used anymore on this sensor module. Comment out the function
zmod4xxx_cleaning | zmod4xxx_cleaning_run if not needed.
_run function has
no effect anymore.
1. The init_hardware function (located in dependencies/zmod4xxx_api/HAL
directory) contains assigning the variable of dev *read, *write and delay
The dev structure function pointers. These three 12C functions have to be generated for the
ERROR NULL PT diq not receive the | corresponding har.dware apd assigned in the init_hardware function. This is
-9 - - pointers for 12C exemplary shown in hal_hicom.c:

dev->read = hicom_i2c read;

dev->write = hicom_i2c _write;

dev->delay _ms = hicom_sleep;
Check if the assignment was done.

R36USO001EU0109 Rev.1.09
Dec.2.21

RENESAS Page 17

ZMOD4410 Programming Manual — Read Me

5.3 Interrupt Usage and Measurement Timing

The programming examples are written in polling mode and with delays. The microcontroller is blocked during
these time periods. Depending on target hardware and the application, this can be avoided by the use of
interrupts. The whole measurement sequences for each example are displayed in the following figure.

1AQ 2nd Gen/Sulfur Odor Sequence IAQ 2nd Gen ULP sequence

Result readout

Heater temperature
Heater temperature

0 1 2 3 4 5 6 0 20 40 60 80 100 120
Time in seconds Time in seconds
IAQ 2nd Gen/IAQ 2nd Gen ULP/Sulfur Odor Sequence Odor Sequence
- Active Phase
rmox[6] @
o mox{5] % val (2000 m
= rmox[4] 2 ¥ N X
"z_"_ rmox[3] mox(s] %
% mmox{2] rmox[9] %
—_% rmox(1] rmox[10] ‘E
@ rmox[0]
rmox[12] 0 1 2 3 4 5

Time in seconds

Figure 3. Measurement Sequences

An active measurement is indicated with a heater temperature greater zero. To lower power consumption, some
modes have a delay afterwards. This timing must be kept exactly with a maximum deviation of 5%. With Odor
Mode, the measurement is automatically restarted by the sensor itself. For the modes IAQ 2™ Gen,

IAQ 2™ Gen ULP, and Sulfur Odor the measurement must be restarted with the API command
zmod4xxx_start_measurement.

The following interrupt usages are possible:

= Using ZMODs Interrupt pin (INT) — This pin indicates the end of a measurement with a falling edge and stays
LOW until the next measurement is restarted regardless if the results are read or not. The LOW phase after
each measurement can be very short and an edge detection is needed.
* Modes IAQ 2" Gen, IAQ 2™ Gen ULP, and Sulfur Odor: Additionally an interrupt timer to start each
measurement with the measurement interval (see Figure 3) is needed.

= Using Timer-based interrupts — Some target hardware may use timer-based interrupts. As an alternative to
using the INT pin, a timer interrupt can be used to wait until the end of the active measurement phase. Note
that an ADC read-out just before the end of the active measurement phase when results are written to the
registers will lead to an error. When replacing the polling loop or delay make sure that the measurement is
completed before ADC readout by checking with API function zmod4xxx_read_status and compare the output
variable zmod4xxx_status with STATUS_SEQUENCER_RUNNING_MASK. An AND link of both should give
zero, otherwise the measurement was not completed.

* Modes IAQ 2™ Gen, IAQ 2" Gen ULP and Sulfur Odor: Additionally the measurement must be started
periodically with the corresponding measurement intervals (see Figure 3). The timing deviation should be
below 5%. Another option for these modes is to use just one timer interrupt with the measurement interval.
Then, the ADC result read-out, error check, and algorithm calculation is done just before starting the next
measurement.

R36US0001EU0109 Rev.1.09 RENESAS Page 18
Dec.2.21

ZMOD4410 Programming Manual — Read Me

5.4 Adaptions to Follow C90 Standard

ZMODA4410 firmware supports C99 standard and later. A few configuration changes are required to comply with
versions earlier than C99.

Initialization of a structure: C90 standard allows the members only to appear in a fixed order, the same as the
array or structure was initialized. In C99 standard, you can initialize and call the elements in any order by using
designators. The file zmod4410_config_xxx.h must be edited. Change all designated initializations by erasing
“.member_name =" in structure initializations, for example:

typedef
char
char
char
} test s

/* C99 S
test_str

¥

/* C90 S
test_str

¥

stdint.h file: stdint.h is used in APl and examples. However, stdint.h file is introduced with C99 standards.

struct {
*a[3];
*b[3];
*c[3];
truct;

TANDARD */
uct struct_C99
l’ llbll, IICI
e, "f
i

TANDARD */

uct struct C90 = {

{ "a", "b", "c" }, /* .a*/
{ "d", "e", " /* b */
{gn, vhe, ity /x e

=40
-

Therefore, it should be added manually when working with a standard earlier than C99. This is the content

needed for stdint.h:

#ifndef STDINT_H

#define STDINT H

typedef unsigned char uint8_t;
typedef unsigned short uintl6é t;
typedef unsigned long uint32_t;
typedef uint32_t uint64_t[2];
typedef signhed char int8 t;
typedef short intl6_t;

typedef long int32_t;

typedef Int32_t Iint64_t[2];
#endif

R36US0001EU0109 Rev.1.09 RENESAS Page 19

Dec.2.21

ZMOD4410 Programming Manual — Read Me

5.5 How to Compile for EVK Hardware

The EVK Programming Examples are written to work with the EVK hardware. To evaluate the impact of code
changes on sensor performance, it is possible to use the EVK as reference. This section provides a manual to

compile the adapted source code into an executable file. This executable can be used with the EVK on a
Windows platform. For compiling, MinGW must be installed. The folder structure should be identical to th
download package. The procedure is described in the IAQ 2" Gen Example (iag_2nd_gen). To adapt it f
other example, replace the corresponding name (iaq_2nd_gen_ulp, odor, sulfur_odor).

1. Install MinGW:

a. MIinGW (32 bit) must be used. Mingw64 will not work due to the 32-bit FTDI library for the EVK H
board.

b. Download mingw-get-setup.exe from https://osdn.net/projects/mingw/releases/.

The downloaded executable file installs “Install MinGW Installation Manager”.
Select required packages:
i. mingw-developer-toolkit-bin
ii. mingw32-base-bin
iii. mingw32-gcc-g++-bin
iv. msys-base-bin.

e. Click “Installation” from the left-top corner and select “Update Catalogue”.

f. Finish the installation.

2. Add the mingw-gcc in system path:

at in the
or the

iCom

a. Open “Control Panel”, select “System”, select “Advanced System Settings”, then select “Environment

Variables”

b. Find “Path” in System Variables then add C:\MinGW\bin (change the path in case MinGW is installed in

different location).
3. Compiling:
a. Goto Command Prompt and change to the following directory of the example folder:
[...\Renesas_ZMOD4410_IAQ_2nd_Gen_Example\ zmod4xxx_evk_example

b. Execute the following command in one line:
gcc src*.c HAL*.c -0 zmod4410_iaq_2nd_gen_example_custom.exe -DHICOM -Isrc -IHAL
-I..\gas-algorithm-libraries\iag_2nd_gen\Windows\x86\mingw32 -L. -:HAL\RSRFTCI2C.lib
-l:..\gas-algorithm-libraries\iaq_2nd_gen\Windows\x86\mingw32\lib_iag_2nd_gen.lib
Note, gcc command may need admin rights!

c. An executable file called zmod4410_iaq_2nd_gen_example_custom.exe will be created.

R36USO001EU0109 Rev.1.09 RENESAS
Dec.2.21

Page 20

https://osdn.net/projects/mingw/releases/

ZMOD4410 Programming Manual — Read Me

6. Revision History

Revision

Date

Description

1.09

Dec.2.21

= Added IAQ 2" Gen ULP Operation Mode description
= Added error code description

= Removed IAQ 1%t Gen descriptions (legacy)

= Completed other minor changes

1.08

Aug.19.21

= Added Arduino description and updated target and compiler list.
= Added stack RAM usage.

= Corrected and reworked Program Flows.

= Extended “Interrupt Usage” description.

= Completed other minor changes

1.07

Sep.24.20

= Add sections “Interrupt Usage”, “Adaptions to Follow C90 Standard”, “How to Compile for
EVK Hardware”.

= Add example for memory footprint and update target and compiler list.
= Refined implementation steps.
= Minor edits in text.

1.06

May.27.20

= Completed many changes throughout the document.

1.05

Nov.14.19

= Cleaning procedure added and explained.
= Figure for file overview updated.

1.04

Feb.12.19

= Update for change in the program flow for Continuous (skip the first 10 samples) and Low
Power (skip the first 5 samples) Operation Modes.

= Implementation of plain trim value calibration.
= Minor edits in text.

1.03

Dec.5.18

= Update for Low Power Operation.
= Minor edits.

1.02

Sep.27.18

= Revision of document title from ZMOD44xx Programming Manual with ZMOD4410 Example
to ZMOD4410 Programming Manual — Read Me.

= Full update for Odor Operation Mode 2.
= Minor edits.

1.00

Jun.11.18

Initial release.

R36US0001EU0109 Rev.1.09 RENESAS Page 21

Dec.2.21

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (‘RENESAS”) PROVIDES TECHNICAL
SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING
REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND
OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible
for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3)
ensuring your application meets applicable standards, and any other safety, security, or other requirements. These
resources are subject to change without notice. Renesas grants you permission to use these resources only for
development of an application that uses Renesas products. Other reproduction or use of these resources is strictly
prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property.
Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims,
damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject
to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources
expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
Www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas
Electronics Corporation. All trademarks and registered
trademarks are the property of their respective owners.

(Rev.1.0 Mar 2020)

Contact Information

For further information on a product, technology, the most
up-to-date version of a document, or your nearest sales
office, please visit:

www.renesas.com/contact/

© 2020 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com
https://www.renesas.com/contact/
https://www.renesas.com/contact/

	1. Introduction
	2. Requirements on Hardware to Operate ZMOD4410
	3. Structure of ZMOD4410 Firmware
	4. Description of the Programming Examples
	4.1 IAQ 2nd Gen Example for EVK
	4.2 IAQ 2nd Gen ULP Example for EVK
	4.3 Odor Example for EVK
	4.4 Sulfur Odor Example for EVK
	4.5 Arduino Examples
	4.6 Optional Library: Cleaning

	5. Adapting the Programming Example for Target Hardware
	5.1 System Hierarchy and Implementation Steps
	5.2 Error Codes
	5.3 Interrupt Usage and Measurement Timing
	5.4 Adaptions to Follow C90 Standard
	5.5 How to Compile for EVK Hardware

	6. Revision History

