
PIC Simulator IDE
BASIC Compiler Reference Manual

Table Of Contents:

General info
Show Warnings, Do Not Compile Unused Code, Initialize Variables On Declaration,

About variables
Dim, As, Bit, Byte, Word, Long, Reserve, .HB, .LB, .HW, .LW, Symbol, True, False, Const, Pointer,
ASM, WREG,

Mathematical and logical operations
Mod, Sqr, Not, And, Or, Xor, Nand, Nor, Nxor, High, Low, Toggle,

Standard Basic language elements
Goto, For, To, Step, Next, While, Wend, If, Then, Else, Endif, Select Case, Case, EndSelect, Halt,

Subroutines
End, Gosub, Return,

Microcontroller related language elements
Config, Input, Output, AllDigital, Define, CONF_WORD, CONF_WORD_2, CLOCK_FREQUENCY,
EEPROM,

Special Basic language elements
WaitMs, WaitUs, SIMULATION_WAITMS_VALUE, Break, ShiftLeft, ShiftRight, LookUp, Count,
COUNT_MODE, FreqOut,

Structured language support (procedures and functions)
Proc, End Proc, Call, Exit, Function, End Function, Include,

Using internal EEPROM memory
Read, Write,

Using internal A/D converter module
Adcin, ADC_CLOCK, ADC_SAMPLEUS,

Using interrupts
Enable, Disable, On Interrupt, Resume, Save System,

Serial communication using internal hardware UART
Hseropen, Hserout, Hserin, Hserget, CrLf, Lf, ALLOW_MULTIPLE_HSEROPEN,
ALLOW_ALL_BAUDRATES,

Software UART implementation
SEROUT_DELAYUS, Serout, Serin, SeroutInv, SerinInv,

Interfacing character LCDs
LCD_BITS, LCD_DREG, LCD_DBIT, LCD_RSREG, LCD_RSBIT, LCD_EREG, LCD_EBIT,
LCD_RWREG, LCD_RWBIT, LCD_COMMANDUS, LCD_DATAUS, LCD_INITMS,
LCD_READ_BUSY_FLAG, Lcdinit, Lcdout, Lcdcmdout, LcdClear, LcdHome (LcdLine1Home),
LcdLine2Home, LcdDisplayOn, LcdDisplayOff, LcdCurOff, LcdCurBlink, LcdCurUnderline,
LcdCurBlinkUnderline, LcdLeft, LcdRight, LcdShiftLeft, LcdShiftRight, LcdLine1Clear,
LcdLine2Clear, LcdLine1Pos, LcdLine2Pos, Lcddefchar, LcdLine3Home, LcdLine4Home,
LcdLine3Clear, LcdLine4Clear, LcdLine3Pos, LcdLine4Pos, LCD_LINES, LCD_CHARS,

1

I2C communication with external I2C devices
I2CWrite, I2CRead, I2CWrite1, I2CRead1, I2CREAD_DELAYUS, I2CCLOCK_STRETCH,
I2CPrepare, I2CStart, I2CStop, I2CSend, I2CRecA (I2CReceiveAck), I2CRecN (I2CReceiveNAck),

Support for Serial Peripheral Interface (SPI) communication
SPI_SCK_REG, SPI_SCK_BIT, SPI_SDI_REG, SPI_SDI_BIT, SPI_SDO_REG, SPI_SDO_BIT,
SPI_CS_REG, SPI_CS_BIT, SPICLOCK_INVERT, SPICS_INVERT, SPICLOCK_STRETCH,
SPIPrepare, SPICSOn, SPICSOff, SPISend, SPIReceive, SPISendBits,

Interfacing graphical LCDs with 128x64 dot matrix
GLCD_DREG, GLCD_RSREG, GLCD_RSBIT, GLCD_EREG, GLCD_EBIT, GLCD_RWREG,
GLCD_RWBIT, GLCD_CS1REG, GLCD_CS1BIT, GLCD_CS2REG, GLCD_CS2BIT, GLcdinit,
GLcdclear, GLcdpset, GLcdpreset, GLcdclean, GLcdposition, GLcdwrite, GLcdout, GLcdin,
GLcdcmdout,

Using internal PWM modules
PWMon, PWMoff, PWMduty,

Interfacing Radio Control (R/C) servos
ServoIn, ServoOut,

Interfacing Stepper Motors
STEP_A_REG, STEP_A_BIT, STEP_B_REG, STEP_B_BIT, STEP_C_REG, STEP_C_BIT,
STEP_D_REG, STEP_D_BIT, STEP_MODE, StepHold, StepCW, StepCCW,

Interfacing 1-WIRE devices
1WIRE_REG, 1WIRE_BIT, 1wireInit, 1wireSendBit, 1wireGetBit, 1wireSendByte, 1wireGetByte,
DS18S20Start, DS18S20ReadT,

Advanced features
StartFromZero,

● General info

Basic compiler editor is composed of editor panel (for user program editing) and source explorer (for
easy navigation through all elements of user program - variables, symbols, constants, subroutines,
procedures and functions). Editor formats and colorizes entered lines of user program, that
simplifies the debugging process.

The primary output of the compiler is an assembler source file. However, with an appropriate
command from the menu it can be assembled and even loaded in the simulator with a single click.
Menu commands and options are rich, as well as the commands from the right-click popup menus
for the editor and source explorer. Basic compiler's assembler output contains many useful
comment lines, that makes it very helpful for educational purposes, also.

Show Warnings
If Show Warnings option is enabled, in the Warnings window Basic compiler will show information
about unused declarations, subroutines, procedures and functions in the user basic program.

Do Not Compile Unused Code
If this option is enabled, Basic compiler will not compile unused declarations, subroutines,
procedures and functions, in order to save memory resources.

Initialize Variables On Declaration
If this option is enabled, Basic compiler will reset to zero all memory locations allocated for
variables, at the position of their declaration in the basic program. This option is useful for
beginners, because RAM memory is filled with random values at device power-up, and it is easy to
make a mistake to assume that all variables are reset to zero at power-up. Experienced users can
save some program memory, by disabling this option and taking control of variable initial values by
user program where necessary.

2

● About variables

Four data types are supported:
Bit - 1-bit, 0 or 1
Byte - 1-byte integers in the range 0 to 255
Word - 2-byte integers in the range 0 to 65,535
Long - 4-byte integers in the range 0 to 4,294,967,295

Variables can be global (declared in the main program, before the End statement) or local (declared
in subroutines, procedures and functions). Variable name used for a variable with global scope can
be used again for local variable names. The compiler will reserve separate memory locations for
them. The total number of variables is limited by the available microcontroller RAM memory.
Variables are declared using DIM statement:
 Dim i As Bit
 Dim j As Byte
 Dim k As Word
 Dim x As Long

If necessary, variable address can be specified during declaration:
 Dim x As Byte @ 0x050

It is possible to use one-dimensional arrays for Byte and Word variables. For example:
 Dim x(10) As Byte
declares an array of 10 Byte variables with array index in the range [0-9].

Long data type (32-bit math support) is an optional add-on module for the integrated basic compiler.

RESERVE statement allows advanced usage by reserving some of the RAM locations to be used by
in-code assembler routines or by MPLAB In-Circuit Debugger. For example:
 Reserve 0x70

High and low byte of a word variable can be addressed by .HB and .LB extensions. Individual bits
can be addressed by .0, .1, ..., .14 and .15 extensions. It is possible to make conversions between
Byte and Word data types using .LB and .HB extensions or directly:
 Dim x As Byte
 Dim y As Word
 x = y.HB
 x = y.LB 'This statement is equivalent to x = y
 y.HB = x
 y.LB = x
 y = x 'This statement will also clear the high byte of y variable

High word (composed by bytes 3 and 2) and low word (composed by bytes 1 and 0) of a long
variable can be addressed by .HW and .LW extensions. Byte 0 can be addressed by .LB and byte 1
by .HB extensions. For example:
 Dim i As Byte
 Dim j As Word
 Dim x As Long
 i = x.LB
 j = x.HW

All special function registers (SFRs) are available as Byte variables in basic programs. Individual
bits of a Byte variable can be addressed by .0, .1, .2, .3, .4, .5, .6 and .7 extensions or using official
names of the bits:
 Dim x As Bit
 Dim y As Byte
 x = y.7
 y.6 = 1
 TRISA.1 = 0
 TRISB = 0

3

 PORTA.1 = 1
 PORTB = 255
 STATUS.RP0 = 1
 INTCON.INTF = 0

Standard short forms for accessing port registers and individual chip pins are also available (RA,
RB, RC, RD, RE can be used as Byte variables; RA0, RA1, RA2, ..., RE6, RE7 are available as Bit
variables):
 RA = 0xff
 RB0 = 1

It is possible to use symbolic names (symbols) in programs, to easily address system variables.
Symbols can be global or local. SYMBOL directive is used to declare symbolic names:
 Symbol led1 = PORTB.0
 led1 = 1
 Symbol ad_action = ADCON0.GO_DONE

Constants can be used in decimal number system with no special marks, in hexadecimal number
system with leading 0x notation (or with H at the end) and in binary system with leading % mark (or
with B at the end). Keywords True and False are also available for Bit type constants. For example:
 Dim x As Bit
 Dim y As Byte
 x = True
 y = 0x55
 y = %01010101

Constants can be assigned to symbolic names using CONST directive. Constants can be global or
local. One example:
 Dim x As Word
 Const pi = 314
 x = pi

Any variable that is declared as a Byte or Word variable using Dim statement can be used as a
pointer to user RAM memory when it is used as an argument of POINTER function. The value
contained in the variable that is used as a pointer should be in the range 0-511. Here is one
example:
 Dim x As Word
 Dim y As Byte
 x = 0x3f
 y = Pointer(x)
 y = y + 0x55
 x = x - 1
 Pointer(x) = y
 y = 0xaa
 x = x - 1
 Pointer(x) = y

It is possible to use comments in basic source programs. The comments must begin with single
quote symbol (') and may be placed anywhere in the program.

Lines of assembler source code may be placed anywhere in basic source program and must begin
with ASM: prefix. For example:
 ASM: NOP
 ASM:LABEL1: MOVLW 0xFF

Symbolic names of declared variables can be used in assembler routines because proper variable
address will be assigned to those names by EQU directive:
 Dim varname As Byte
 varname = 0
 ASM: MOVLW 0xFF
 ASM: MOVWF VARNAME

4

When working with inline assembler code, it could be useful to use working register as a source or
destination in assign statements. For that purpose WREG keyword should be used and the compiler
will take care of the bank control:
 Dim varname As Byte
 ASM: MOVLW 0xFF
 varname = WREG

● Mathematical and logical operations

Five arithmetic operations (+, -, *, /, MOD) are available for Byte, Word and Long data types. The
compiler is able to compile all possible complex arithmetic expressions. For example:
 Dim i As Word
 Dim j As Word
 Dim x As Word
 i = 123
 j = i * 234
 x = 2
 x = (j * x - 12345) / (i + x)

Square root of a number (0-65535 range) can be calculated using SQR function:
 Dim x As Word
 x = 3600
 x = Sqr(x)

For Bit data type variables seven logical operations are available. It is possible to make only one
logical operation in one single statement. Logical operations are also available for Byte and Word
variables. For example:
Example 1:
 Dim i As Bit
 Dim j As Bit
 Dim x As Bit
 x = Not i
 x = i And j
 x = i Or j
 x = i Xor j
 x = i Nand j
 x = i Nor j
 x = i Nxor j

Example 2:
 Dim x As Word
 Dim y As Word
 x = x Or y
 PORTB = PORTC And %11110000

There are three statements that are used for bit manipulation - HIGH, LOW and TOGGLE. If the
argument of these statements is a bit in one of the PORT registers, then the same bit in the
corresponding TRIS register is automatically cleared, setting the affected pin as an output pin. Some
examples:
 High PORTB.0
 Low ADCON0.ADON
 Toggle OPTION_REG.INTEDG

● Standard Basic language elements

Unconditional jumps are performed by GOTO statement. It uses line label name as argument. Line
labels can be global or local. Line labels must be followed by colon mark ':'. Here is one example:
 Dim x As Word
 x = 0
 loop: x = x + 1

5

 Goto loop

Four standard BASIC structures are supported: FOR-TO-STEP-NEXT, WHILE-WEND, IF-THEN-
ELSE-ENDIF and SELECT CASE-CASE-ENDSELECT. Here are several examples:
Example 1:
 Dim x As Byte
 TRISB = 0
 x = 255
 While x > 0
 PORTB = x
 x = x - 1
 WaitMs 100
 Wend
 PORTB = x

Example 2:
 TRISB = 0
 loop:
 If PORTA.0 Then
 PORTB.0 = 1
 Else
 PORTB.0 = 0
 Endif
 Goto loop

Example 3:
 Dim x As Word
 TRISB = 0
 For x = 0 To 10000 Step 10
 PORTB = x.LB
 Next x

Example 4:
 Dim i As Byte
 Dim j As Byte
 Dim x As Byte
 j = 255
 x = 2
 TRISB = 0
 For i = j To 0 Step -x
 PORTB = i
 Next i

Example 5:
 Dim x As Byte
 loop:
 Select Case x
 Case 255
 x = 1
 Case <= 127
 x = x + 1
 Case Else
 x = 255
 EndSelect
 Goto loop

After IF-THEN statement in the same line can be placed almost every other possible statement and
then ENDIF is not used. There are no limits for the number of nested statements of any kind. In the
test expressions of IF-THEN and WHILE statements it is possible to use multiple ORed and multiple
ANDed conditions. Multiple comma separated conditions can be used with CASE statements, also.

6

If there is a need to insert an infinite loop in basic program, that can be done with HALT statement.

● Subroutines

Structured programs can be written using subroutine calls with GOSUB statement that uses line
label name as argument. Return from a subroutine is performed by RETURN statement. User need
to take care that the program structure is consistent. When using subroutines, main routine need to
be ended with END statement. END statement is compiled as an infinite loop. Here is an example:
 Symbol ad_action = ADCON0.GO_DONE
 Symbol display = PORTB
 TRISB = %00000000
 TRISA = %111111
 ADCON0 = 0xc0
 ADCON1 = 0
 High ADCON0.ADON
 main:
 Gosub getadresult
 display = ADRESH
 Goto main
 End

 getadresult:
 High ad_action
 While ad_action
 Wend
 Return

● Microcontroller related language elements

Microcontroller ports and pins can be configured as inputs or outputs by assigning proper values to
TRISx registers or their bits. That task can also be accomplished by a CONFIG statement. Its syntax
is apparent from the following examples:
 Config PORTB = Output
 Config RA0 = Output
 Config PORTC.3 = Input
 Config RD = Input

All PIC microcontrollers that feature analog capabilities (A/D converters and/or analog comparators)
are setup at power-up to use the involved pins for these analog purposes. In order to use those pins
as digital input/outputs, they should be setup for digital use by changing the values in some of the
special functions registers as specified by the datasheets. To setup all pins for digital purposes,
ALLDIGITAL statement can be used at the beginning of the basic program.

There are two configuration parameters CONF_WORD and CONF_WORD_2 (not available for all
devices) that can be set using DEFINE directive to override the default values. The clock frequency
of the target device can be specified by setting the CLOCK_FREQUENCY parameter (the value is
expressed in MHz). These parameters should be setup at the beginning of the basic program. For
example:
 Define CONF_WORD = 0x3f72
 Define CLOCK_FREQUENCY = 20

EEPROM memory content can be defined in basic programs using EEPROM statement. Its first
argument is the address of the first byte in the data list. Multiple EEPROM statements can be used
to fill in different areas of EEPROM memory, if needed. For example:
 EEPROM 0, 0x55
 EEPROM 253, 0x01, 0x02, 0x03

● Special Basic language elements

WAITMS and WAITUS statements can be used to force program to wait for the specified number of
milliseconds or microseconds. It is also possible to use variable argument of Byte or Word data

7

type. These routines use Clock Frequency parameter that can be changed from the Options menu.
WAITUS routine has minimal delay and step that also depend on the Clock Frequency parameter.
 Dim x As Word
 x = 100
 WaitMs x
 WaitUs 50

Important Note: When writing programs for real PIC devices you will most likely use delay intervals
that are comparable to 1 second or 1000 milliseconds. Many examples in this help file also use such
'real-time' intervals. But, if you want to simulate those programs you have to be very patient to see
something to happen, even on very powerful PCs available today. For simulation of 'WaitMs 1000'
statement on 4MHz you have to wait the simulator to simulate 1000000 instructions and it will take
considerable amount of time even if 'extremely fast' simulation rate is selected. So, just for the
purpose of simulation you should recompile your programs with adjusted delay intervals, that should
not exceed 1-10ms. But, be sure to recompile your program with original delays before you
download it to a real device. There is an easy way to change arguments of all WAITMS statements
in a large basic program with a value in the range 1-10 for simulation purposes. With one line of
code setting parameter SIMULATION_WAITMS_VALUE with DEFINE directive, the arguments of all
WAITMS statements in the program will be ignored and the specified value will be used instead
during compiling. Setting the value 0 (default) for this parameter (or omitting the whole line) will
cancel its effect and the compiled code will be ready again for the real hardware.

It is possible to insert breakpoints for the simulator directly in basic programs using BREAK
statement. It is compiled as reserved opcode 0x0001 and the simulator will interpret this opcode as
a breakpoint and switch the simulation rate to Step By Step.

SHIFTLEFT and SHIFTRIGHT functions can be used to shift bit-level representation of a variable
left and right. The first argument is input variable and the second argument is number of shifts to be
performed. Here are two examples:
Example 1:
 TRISB = 0x00
 PORTB = %00000011

 goleft:
 WaitMs 250
 PORTB = ShiftLeft(PORTB, 1)
 If PORTB = %11000000 Then Goto goright
 Goto goleft

 goright:
 WaitMs 250
 PORTB = ShiftRight(PORTB, 1)
 If PORTB = %00000011 Then Goto goleft
 Goto goright

Example 2:
 TRISB = 0x00
 PORTB = %00000001

 goleft:
 WaitMs 250
 PORTB = ShiftLeft(PORTB, 1)
 If PORTB.7 Then Goto goright
 Goto goleft

 goright:
 WaitMs 250
 PORTB = ShiftRight(PORTB, 1)
 If PORTB.0 Then Goto goleft
 Goto goright

8

LOOKUP function can be used to select one from the list of Byte constants, based on the value in
the index Byte variable, that is supplied as the last separated argument of the function. The first
constant in the list has index value 0. The selected constant will be loaded into the result Byte data
type variable. If the value in the index variable goes beyond the number of constants in the list, the
result variable will not be affected by the function. Here is one small example for a 7-segment LED
display:
 Dim digit As Byte
 Dim mask As Byte
 TRISB = %00000000
 loop:
 For digit = 0 To 9
 mask = LookUp(0x3f, 0x06, 0x5b, 0x4f, 0x66, 0x6d, 0x7d, 0x07, 0x7f,
0x6f), digit
 PORTB = mask
 WaitMs 1000
 Next digit
 Goto loop

If all constants in the list (or part of them) are ASCII values, then shorter form of the list can be
created by using string arguments. For example:
 mask = LookUp("ABCDEFGHIJK"), index

If it is necessary to count the number of pulses that come to one of the micrcontroller's pins during a
certain period of time, there is COUNT statement available for that purpose. It has three arguments.
The first one is the pin that is connected to the source of pulses. It should previously be setup as
digital input pin. The second argument defines the duration of the observation expressed in
milliseconds and it must be a numeric constant in the range 1-10000. The last argument of this
statement is a Byte or Word variable where the counted number of pulses will be stored after its
execution. COUNT statement uses internal Timer0 peripheral module. There is COUNT_MODE
parameter available that can be setup with DEFINE directive. If it is set to value 1 (default value)
COUNT statement will count the number of rising pulse edges. If COUNT_MODE = 2, the number of
falling edges will be counted.
 Define COUNT_MODE = 1
 Dim num_of_pulses As Word
 Count PORTB.0, 1000, num_of_pulses

FREQOUT statement can be used to generate a train of pulses (sound tone) on the specified pin
with constant frequency and specified duration. It has three arguments. The first argument is the pin
that the tone will be generated on. It should previously be setup as digital output pin. The second
argument specify the tone frequency and it must be a constant in the range 1-10000Hz. The third
argument defines the tone duration and it also must be a numeric constant in the range 1-10000ms.
Choosing higher tone frequencies with low microcontroller clock frequency used may result in
somewhat inaccurate frequency of the generated tones. FREQOUT statement can be alternatively
used in 'variable mode' with Word data type variables instead of constants for the last two
arguments. In this mode of usage the second argument is supposed to hold the half-period of the
tone (in microseconds) and the third argument must hold the total number of pulses that will be
generated. The following code will generate one second long tone on RB0 pin with 600Hz
frequency:
 TRISB.0 = 0
 FreqOut PORTB.0, 600, 1000

● Structured language support (procedures and functions)

Procedures can be declared with PROC statement. They can contain up to 5 arguments (comma
separated list) and all available data types can be used for argument variables. Argument variables
are declared locally, so they do not need to have unique names in relation to the rest of user basic
program, that makes very easy to re-use once written procedures in other basic programs. The
procedures can be exited with EXIT statement. They must be ended with END PROC statement and
must be placed after the END statement in program. Calls to procedures are implemented with
CALL statement. The list of passed arguments can contain both variables and numeric constants.
For example:

9

 Dim x As Byte
 TRISB = 0
 For x = 0 To 255
 Call portb_display(x)
 WaitMs 100
 Next x
 End

 Proc portb_display(arg1 As Byte)
 PORTB = arg1
 End Proc

All facts stated for procedures are valid for functions, also. Functions can be declared with
FUNCTION statement. They can contain up to 5 arguments and argument variables are declared
locally. Functions can be exited with EXIT statement and must be ended with END FUNCTION. The
name of the function is declared as a global variable, so if the function is called with CALL
statement, after its execution the function variable will contain the result. Standard way of function
calls in assignment statements can be used, also. One simple example:
 Dim x As Byte
 Dim y As Word
 For x = 0 To 255
 y = square(x)
 Next x
 End

 Function square(arg1 As Word) As Word
 square = arg1 * arg1
 End Function

Basic source code from an external file can be included to the current program by using INCLUDE
directive. Its only argument is a string containing the path to the external .BAS file. This can be the
full path or only the file name, if the external file is located in the same folder as the current basic
program file. During the compilation process the external basic source will be appended to the
current program. Multiple files can be included with separate INCLUDE directives. To maintain the
overall basic code structure, it is strongly suggested that the external file contains global
declarations, subroutines, procedures and functions, only. Here is one very simple example for the
demonstration:
main.bas:
 Dim i As Word
 Dim j As Word

 Include "inc1.bas"
 Include "inc2.bas"

 For i = 1 To 10
 j = func1(i, 100)
 Call proc1(j)
 Next i
 End

inc1.bas:
 Dim total As Word

 Proc proc1(i As Word)
 total = total + i
 End Proc

inc2.bas:
 Function func1(i As Word, j As Word) As Word
 func1 = i + j
 End Function

10

Structured language support is an optional add-on module for the integrated basic compiler.

● Using internal EEPROM memory

Access to EEPROM data memory can be programmed using READ and WRITE statements. The
first argument is the address of a byte in EEPROM memory and can be a constant or Byte variable.
The second argument is data that is read or written (for READ statement it must be a Byte variable).
It is suggested to keep interrupts disabled during the execution of WRITE statement.
 Dim x As Byte
 Dim y As Byte
 x = 10
 Read x, y
 Write 11, y

● Using internal A/D converter module

ADCIN statement is available as a support for internal A/D converter. Its first argument is ADC
channel number and the second argument is a variable that will be used to store the result of A/D
conversion. ADCIN statement uses two parameters ADC_CLOCK and ADC_SAMPLEUS that have
default values 3 and 20. These default values can be changed using DEFINE directive.
ADC_CLOCK parameter determines the choice for ADC clock source (allowed range is 0-3 or 0-7
depending on the device used). ADC_SAMPLEUS parameter sets the desired ADC acquisition time
in microseconds (0-255). ADCIN statement presupposes that the corresponding pin is configured as
an analog input (TRIS, ADCON1 register and on some devices ANSEL register). Here is one
example:
 Dim v(5) As Byte
 Dim vm As Word
 Dim i As Byte

 Define ADC_CLOCK = 3
 Define ADC_SAMPLEUS = 50
 TRISA = 0xff
 TRISB = 0
 ADCON1 = 0

 For i = 0 To 4
 Adcin 0, v(i)
 Next i

 vm = 0
 For i = 0 To 4
 vm = vm + v(i)
 Next i
 vm = vm / 5

 PORTB = vm.LB

● Using interrupts

Interrupt routine should be placed as all other subroutines after the END statement. It should begin
with ON INTERRUPT and end with RESUME statement. If arithmetic operations, arrays or any other
complex statements are used in interrupt routine, then SAVE SYSTEM statement should be placed
right after ON INTERRUPT statement to save the content of registers used by system. ENABLE and
DISABLE statements can be used in main program to control GIE bit in INTCON register. RESUME
statement will set the GIE bit and enable new interrupts. For example:
Example 1:
 Dim x As Byte
 x = 255
 TRISA = 0
 PORTA = x

11

 INTCON.INTE = 1
 Enable
 End

 On Interrupt
 x = x - 1
 PORTA = x
 INTCON.INTF = 0
 Resume

Example 2:
 Dim t As Word
 t = 0
 TRISA = 0xff
 ADCON1 = 0
 TRISB = 0
 OPTION_REG.T0CS = 0
 INTCON.T0IE = 1
 Enable
 loop:
 Adcin 0, PORTB
 Goto loop
 End

 On Interrupt
 Save System
 t = t + 1
 INTCON.T0IF = 0
 Resume

● Serial communication using internal hardware UART

The support for both hardware and software serial communication is also available. HSEROPEN,
HSEROUT, HSERIN and HSERGET statements can be used with PIC devices that have internal
hardware UART. HSEROPEN statement sets up the hardware UART. Its only argument is baud rate
and allowed values are: 300, 600, 1200, 2400, 4800, 9600, 14400, 19200, 28800, 31250, 38400,
56000 and 57600. If the argument is omitted UART will be set up for 9600 baud rate. If parameter
ALLOW_MULTIPLE_HSEROPEN is set to 1 using DEFINE directive, it will be possible to use
HSEROPEN statement more than once in the program, for example to change selected baud rate. If
ALLOW_ALL_BAUDRATES parameter is set to 1 using DEFINE directive all baud rates in the range
100-57600 will be allowed. HSEROUT statement is used for serial transmission. HSEROUT
statement may have multiple arguments separated by ','. You can use strings, LF keyword for Line
Feed character or CRLF keyword for Carriage Return - Line Feed sequence, constants and
variables. If '#' sign is used before the name of a variable then its decimal representation is sent to
the serial port. HSERIN statement can be used to load a list of Byte and Word variables with the
values received on serial port. This statement will wait until the required number of bytes is received
on serial port. HSERGET statement have one argument that must be a Byte variable. If there is a
character waiting in the receive buffer it will be loaded in the variable, otherwise 0 value will be
loaded. Here are some examples:
Example 1:
 Dim i As Byte
 Hseropen 38400
 WaitMs 1000
 For i = 20 To 0 Step -1
 Hserout "Number: ", #i, CrLf
 WaitMs 500
 Next i

Example 2:
 Dim i As Byte
 Hseropen 19200

12

 loop:
 Hserin i
 Hserout "Number: ", #i, CrLf
 Goto loop

Example 3:
 Dim i As Byte
 Hseropen 19200
 loop:
 Hserget i
 If i > 0 Then
 Hserout "Number: ", #i, CrLf
 WaitMs 50
 Endif
 Goto loop

● Software UART implementation

On all supported PIC devices software serial communication can be implemented with SEROUT
and SERIN statements. The first argument of both statements must be one of the microcontroller's
pins, and the second argument is baud rate: 300, 600, 1200, 2400, 4800, 9600 or 19200. Using
higher baud rates with low clock frequency could cause framing errors. For SEROUT statement then
follows the list of arguments to be sent to serial port. You can use strings, LF keyword for Line Feed
character or CRLF keyword for Carriage Return - Line Feed sequence, constants and variables. If '#'
sign is used before the name of a variable then its decimal representation is sent to the serial port.
SEROUT statement uses SEROUT_DELAYUS parameter that can be set by DEFINE directive and
has default value of 1000 microseconds. This defines the delay interval before a character is
actually sent to the port and it is used to increase the reliability of software SEROUT routine. For
SERIN statement then follows the list of Byte and Word variables to be loaded with the values
received on serial port. This statement will wait until the required number of bytes is received on
serial port. For serial interface with inverted logic levels there are SERININV and SEROUTINV
statements available. Some examples:
Example 1:
 Define SEROUT_DELAYUS = 5000
 Serout PORTC.6, 1200, "Hello world!", CrLf

Example 2:
 Dim i As Byte
 loop:
 Serin PORTC.7, 9600, i
 Serout PORTC.6, 9600, "Number: ", #i, CrLf
 Goto loop

● Interfacing character LCDs

Basic compiler also features the support for LCD modules based on HD44780 or compatible
controller chip. Prior to using LCD related statements, user should set up LCD interface using
DEFINE directives. Here is the list of available parameters:
LCD_BITS - defines the number of data interface lines (allowed values are 4 and 8; default is 4)
LCD_DREG - defines the port where data lines are connected to (default is PORTB)
LCD_DBIT - defines the position of data lines for 4-bit interface (0 or 4; default is 4), ignored for 8-bit
interface
LCD_RSREG - defines the port where RS line is connected to (default is PORTB)
LCD_RSBIT - defines the pin where RS line is connected to (default is 3)
LCD_EREG - defines the port where E line is connected to (default is PORTB)
LCD_EBIT - defines the pin where E line is connected to (default is 2)
LCD_RWREG - defines the port where R/W line is connected to (set to 0 if not used; 0 is default)
LCD_RWBIT - defines the pin where R/W line is connected to (set to 0 if not used; 0 is default)
LCD_COMMANDUS - defines the delay after LCDCMDOUT statement (default value is 5000)
LCD_DATAUS - defines the delay after LCDOUT statement (default value is 100)
LCD_INITMS - defines the delay for LCDINIT statement (default value is 100)

13

The last three parameters should be set to low values when using integrated LCD module simulator.
If R/W line is connected to microcontroller and parameter LCD_READ_BUSY_FLAG is set to 1
using DEFINE directive, then these delay parameters will be ignored by compiler and correct timing
will be implemented by reading the status of the busy flag in the LCD.

LCDINIT statement should be placed in the program before any of LCDOUT (used for sending data)
and LCDCMDOUT (used for sending commands) statements. Numeric constant argument of
LCDINIT is used to define the cursor type: 0 = no cursor (default), 1 = blink, 2 = underline, 3 = blink
+ underline. LCDOUT and LCDCMDOUT statements may have multiple arguments separated by ','.
Strings, constants and variables can be used as arguments of LCDOUT statement. If '#' sign is used
before the name of a variable then its decimal representation is sent to the LCD module. Constants
and variables can be used as arguments of LCDCMDOUT statement and the following keywords
are also available: LcdClear, LcdHome, LcdLine2Home, LcdDisplayOn, LcdDisplayOff, LcdCurOff,
LcdCurBlink, LcdCurUnderline, LcdCurBlinkUnderline, LcdLeft, LcdRight, LcdShiftLeft,
LcdShiftRight, LcdLine1Clear, LcdLine2Clear, LcdLine1Pos() and LcdLine2Pos(). Argument of
LcdLine1Pos() and LcdLine2Pos() can be a number in the range (1-40) or Byte data type variable.
The value contained in that variable should be in the same range. LcdDisplayOn and LcdDisplayOff
will turn the cursor off. Cursor related symbolic commands can be used as arguments of LCDINIT.
Here are some examples:
Example 1:
 Define LCD_BITS = 8
 Define LCD_DREG = PORTB
 Define LCD_DBIT = 0
 Define LCD_RSREG = PORTD
 Define LCD_RSBIT = 1
 Define LCD_EREG = PORTD
 Define LCD_EBIT = 3
 Define LCD_RWREG = PORTD
 Define LCD_RWBIT = 2

 Lcdinit LcdCurBlink
 loop:
 Lcdout "Hello world!"
 WaitMs 1000
 Lcdcmdout LcdClear
 WaitMs 1000
 Goto loop

Example 2:
 Define LCD_BITS = 8
 Define LCD_DREG = PORTB
 Define LCD_DBIT = 0
 Define LCD_RSREG = PORTD
 Define LCD_RSBIT = 1
 Define LCD_EREG = PORTD
 Define LCD_EBIT = 3
 Define LCD_RWREG = PORTD
 Define LCD_RWBIT = 2

 Dim x As Word
 x = 65535
 Lcdinit 3
 WaitMs 1000
 loop:
 Lcdout "I am counting!"
 Lcdcmdout LcdLine2Home
 Lcdout #x
 x = x - 1
 WaitMs 250
 Lcdcmdout LcdClear

14

 Goto loop

LCD related statements will take control over TRIS registers connected with pins used for LCD
interface, but if you use PORTA or PORTE pins on devices with A/D Converter Module then you
should take control over the ADCON1 register to set used pins as digital I/O.

You can setup up to eight user defined characters to be used on LCD. This can easily be done with
LCDDEFCHAR statement. The first argument of this statement is char number and must be in the
range 0-7. Next 8 arguments form 8-line char pattern (from the top to the bottom) and must be in the
range 0-31 (5-bits wide). These 8 user characters are assigned to char codes 0-7 and 8-15 and can
be displayed using LCDOUT statement. After LCDDEFCHAR statement the cursor will be in HOME
position. For example:
 Lcddefchar 0, 10, 10, 10, 10, 10, 10, 10, 10
 Lcddefchar 1, %11111, %10101, %10101, %10101, %10101, %10101, %10101,
%11111
 Lcdout 0, 1, "Hello!", 1, 0

For LCDs with four lines of characters additional symbolic arguments of LCDCMDOUT statement
can be used: LcdLine3Home, LcdLine4Home, LcdLine3Clear, LcdLine4Clear, LcdLine3Pos() and
LcdLine4Pos(). Argument of LcdLine3Pos() and LcdLine4Pos() can be a number in the range (1-40)
or Byte data type variable. The value contained in that variable should be in the same range. Prior to
using these language elements, correct values determining LCD type should be assigned to
LCD_LINES and LCD_CHARS parameters using DEFINE directives.
 Define LCD_LINES = 4
 Define LCD_CHARS = 16
 Define LCD_BITS = 8
 Define LCD_DREG = PORTB
 Define LCD_DBIT = 0
 Define LCD_RSREG = PORTD
 Define LCD_RSBIT = 1
 Define LCD_EREG = PORTD
 Define LCD_EBIT = 3
 Define LCD_RWREG = PORTD
 Define LCD_RWBIT = 2

 Lcdinit 3
 loop:
 Lcdcmdout LcdClear
 Lcdcmdout LcdLine1Home
 Lcdout "This is line 1"
 Lcdcmdout LcdLine2Home
 Lcdout "This is line 2"
 Lcdcmdout LcdLine3Home
 Lcdout "This is line 3"
 Lcdcmdout LcdLine4Home
 Lcdout "This is line 4"
 WaitMs 1000
 Lcdcmdout LcdLine1Clear
 Lcdcmdout LcdLine2Clear
 Lcdcmdout LcdLine3Clear
 Lcdcmdout LcdLine4Clear
 Lcdcmdout LcdLine1Pos(1)
 Lcdout "Line 1"
 Lcdcmdout LcdLine2Pos(2)
 Lcdout "Line 2"
 Lcdcmdout LcdLine3Pos(3)
 Lcdout "Line 3"
 Lcdcmdout LcdLine4Pos(4)
 Lcdout "Line 4"
 WaitMs 1000
 Goto loop

15

● I2C communication with external I2C devices

I2C communication can be implemented in basic programs using I2CWRITE and I2CREAD
statements. The first argument of both statements must be one of the microcontroller's pins that is
connected to the SDA line of the external I2C device. The second argument of both statements must
be one of the microcontroller's pins that is connected to the SCL line. The third argument of both
statements must be a constant value or Byte variable called 'slave address'. Its format is described
in the datasheet of the used device. For example, for EEPROMs from 24C family (with device
address inputs connected to ground) the value 0xA0 should be used for slave address parameter.
Both statements will take control over bit 0 of slave address during communication. The forth
argument of both statements must be a Byte or Word variable (this depends on the device used)
that contains the address of the location that will be accessed. If a constant value is used for
address parameter it must be in Byte value range. The last (fifth) argument of I2CWRITE statement
is a Byte constant or variable that will be written to the specified address, and for I2CREAD
statement it must be a Byte variable to store the value that will be read from the specified address. It
is allowed to use more than one 'data' argument. For I2C devices that do not support data address
argument there is short form of I2C statements (I2CWRITE1 and I2CREAD1) available where slave
address argument is followed with one or more data arguments directly. For some I2C slave devices
it is necessary to make a delay to make sure device is ready to respond to I2CREAD statement. For
that purpose there is I2CREAD_DELAYUS parameter that can be set by DEFINE directive and has
default value of 0 microseconds. Also, for slower I2C devices, it might be necessary to use longer
clock pulses. That can be done by setting I2CCLOCK_STRETCH parameter using DEFINE
directive. This parameter will set clock stretch factor. Its default value is 1. Here is one combined
example with LCD module and 24C64 EEPROM (SDA connected to RC2; SCL connected to RC3):
Example 1:
 Define LCD_BITS = 8
 Define LCD_DREG = PORTB
 Define LCD_DBIT = 0
 Define LCD_RSREG = PORTD
 Define LCD_RSBIT = 1
 Define LCD_EREG = PORTD
 Define LCD_EBIT = 3
 Define LCD_RWREG = PORTD
 Define LCD_RWBIT = 2

 Dim addr As Word
 Dim data As Byte
 Symbol sda = PORTC.2
 Symbol scl = PORTC.3
 Lcdinit 3
 WaitMs 1000

 For addr = 0 To 31
 Lcdcmdout LcdClear
 data = 255 - addr
 I2CWrite sda, scl, 0xa0, addr, data
 Lcdout "Write To EEPROM"
 Lcdcmdout LcdLine2Home
 Lcdout "(", #addr, ") = ", #data
 WaitMs 1000
 Next addr

 For addr = 0 To 31
 Lcdcmdout LcdClear
 I2CRead sda, scl, 0xa0, addr, data
 Lcdout "Read From EEPROM"
 Lcdcmdout LcdLine2Home
 Lcdout "(", #addr, ") = ", #data
 WaitMs 1000
 Next addr

16

There is a set of low-level I2C communication statements available, if it is needed to have more
control over I2C communication process. I2CPREPARE statement has two arguments that must be
one of the microcontroller's pins. The first argument defines SDA line and second argument defines
SCL line. This statement will prepare these lines for I2C communication. I2CSTART statement will
generate start condition, and I2CSTOP statement will generate stop condition. One byte can be sent
to the I2C slave using I2CSEND statement. After the statement is executed C bit in STATUS
register will hold the copy of the state on the SDA line during the acknowledge cycle. There are two
statements that can be used to receive one byte from I2C slave. I2CRECA or I2CRECEIVEACK will
generate acknowledge signal during acknowlegde cycle after the byte is received. I2CRECN or
I2CRECEIVENACK will generate not acknowledge signal during acknowlegde cycle after the byte is
received. One example:
Example 2:
 Dim addr As Word
 Dim data(31) As Byte

 Symbol sda = PORTC.2
 Symbol scl = PORTC.3
 addr = 0

 I2CPrepare sda, scl
 I2CStart
 I2CSend 0xa0
 I2CSend addr.HB
 I2CSend addr.LB
 I2CStop
 I2CStart
 I2CSend 0xa1
 For addr = 0 To 30
 I2CReceiveAck data(addr)
 Next addr
 I2CRecN data(31)
 I2CStop

● Support for Serial Peripheral Interface (SPI) communication

Prior to using SPI related statements, SPI interface should be set up using DEFINE directives.
There are eight available parameters to define the connection of SCK, SDI, SDO and (optionally)
CS lines:
SPI_SCK_REG - defines the port where SCK line is connected to
SPI_SCK_BIT - defines the pin where SCK line is connected to
SPI_SDI_REG - defines the port where SDI line is connected to
SPI_SDI_BIT - defines the pin where SDI line is connected to
SPI_SDO_REG - defines the port where SDO line is connected to
SPI_SDO_BIT - defines the pin where SDO line is connected to
SPI_CS_REG - defines the port where CS line is connected to
SPI_CS_BIT - defines the pin where CS line is connected to

The assumed settings are active-high for Clock line and active-low for ChipSelect line. That can be
changed by assigning the value 1 to SPICLOCK_INVERT and/or SPICS_INVERT parameters by
DEFINE directive. For slower SPI devices, it might be necessary to use longer clock pulses. The
default clock stretch factor (1) can be changed by setting SPICLOCK_STRETCH parameter.

SPIPREPARE statement (no arguments) will prepare interface lines for SPI communication.
SPICSON and SPICSOFF statements will enable/ disable the ChipSelect line of the interface. One
byte can be sent to the SPI peripheral using SPISEND statement. To receive a byte from the
peripheral SPIRECEIVE statement should be used. To send the specified number of bits there is
SPISENDBITS statement available. Its first argument should be the number of bits to be sent [1-8]
and the second argument is a byte variable or constant. Here is one example for using 25C040 SPI
eeprom:
Example 1:

17

 AllDigital

 Define SPI_CS_REG = PORTC
 Define SPI_CS_BIT = 0
 Define SPI_SCK_REG = PORTC
 Define SPI_SCK_BIT = 3
 Define SPI_SDI_REG = PORTC
 Define SPI_SDI_BIT = 4
 Define SPI_SDO_REG = PORTC
 Define SPI_SDO_BIT = 5
 SPIPrepare

 Define LCD_BITS = 8
 Define LCD_DREG = PORTD
 Define LCD_DBIT = 0
 Define LCD_RSREG = PORTE
 Define LCD_RSBIT = 0
 Define LCD_RWREG = PORTE
 Define LCD_RWBIT = 1
 Define LCD_EREG = PORTE
 Define LCD_EBIT = 2
 Define LCD_READ_BUSY_FLAG = 1
 Lcdinit

 Dim addr As Byte
 Dim data As Byte

 For addr = 0 To 10
 data = 200 - addr
 SPICSOn
 SPISend 0x06
 SPICSOff
 SPICSOn
 SPISend 0x02
 SPISend addr
 SPISend data
 SPICSOff
 Lcdcmdout LcdClear
 Lcdout "Write To EEPROM"
 Lcdcmdout LcdLine2Home
 Lcdout "(", #addr, ") = ", #data
 WaitMs 500
 Next addr

 For addr = 0 To 10
 SPICSOn
 SPISend 0x03
 SPISend addr
 SPIReceive data
 SPICSOff
 Lcdcmdout LcdClear
 Lcdout "Read From EEPROM"
 Lcdcmdout LcdLine2Home
 Lcdout "(", #addr, ") = ", #data
 WaitMs 500
 Next addr

Here is the same example written for 93C86 Microwire EEPROM:
Example 2:
 AllDigital

18

 Define SPI_CS_REG = PORTC
 Define SPI_CS_BIT = 0
 Define SPICS_INVERT = 1
 Define SPI_SCK_REG = PORTC
 Define SPI_SCK_BIT = 3
 Define SPI_SDI_REG = PORTC
 Define SPI_SDI_BIT = 4
 Define SPI_SDO_REG = PORTC
 Define SPI_SDO_BIT = 5
 SPIPrepare

 Define LCD_BITS = 8
 Define LCD_DREG = PORTD
 Define LCD_DBIT = 0
 Define LCD_RSREG = PORTE
 Define LCD_RSBIT = 0
 Define LCD_RWREG = PORTE
 Define LCD_RWBIT = 1
 Define LCD_EREG = PORTE
 Define LCD_EBIT = 2
 Define LCD_READ_BUSY_FLAG = 1
 Lcdinit

 Dim addr As Byte
 Dim data As Byte

 SPICSOn
 SPISendBits 6, %100110
 SPISendBits 8, %00000000
 SPICSOff

 For addr = 0 To 10
 data = 200 - addr
 SPICSOn
 SPISendBits 6, %101000
 SPISendBits 8, addr
 SPISend data
 SPICSOff
 SPICSOn
 SPISend 0x00
 SPICSOff
 Lcdcmdout LcdClear
 Lcdout "Write To EEPROM"
 Lcdcmdout LcdLine2Home
 Lcdout "(", #addr, ") = ", #data
 WaitMs 500
 Next addr

 For addr = 0 To 10
 SPICSOn
 SPISendBits 6, %110000
 SPISendBits 8, addr
 SPIReceive data
 SPICSOff
 Lcdcmdout LcdClear
 Lcdout "Read From EEPROM"
 Lcdcmdout LcdLine2Home
 Lcdout "(", #addr, ") = ", #data
 WaitMs 500
 Next addr

19

● Interfacing graphical LCDs with 128x64 dot matrix

Interfacing graphical LCDs with dot matrix resolution 128x64 controlled by KS0108 or compatible
chip is supported with the following list of Basic language elements: GLCDINIT, GLCDCLEAR,
GLCDPSET, GLCDPRESET, GLCDPOSITION, GLCDWRITE, GLCDCLEAN, GLCDOUT, GLCDIN,
GLCDCMDOUT. Prior to using Graphical LCDs related statements, user should set up the interface
with the graphical LCD module using DEFINE directives. Here is the list of available parameters:
GLCD_DREG - defines the port where data lines are connected to (it has to be a full 8-pins port)
GLCD_RSREG - defines the port where RS line is connected to
GLCD_RSBIT - defines the pin where RS line is connected to
GLCD_EREG - defines the port where E line is connected to
GLCD_EBIT - defines the pin where E line is connected to
GLCD_RWREG - defines the port where R/W line is connected to
GLCD_RWBIT - defines the pin where R/W line is connected to
GLCD_CS1REG - defines the port where CS1 line is connected to
GLCD_CS1BIT - defines the pin where CS1 line is connected to
GLCD_CS2REG - defines the port where CS2 line is connected to
GLCD_CS2BIT - defines the pin where CS2 line is connected to

GLCDINIT statement should be placed somewhere at the beginning of the basic program before
any other graphical LCD related stetements are used. Graphical LCD related statements will take
control over TRIS registers connected with pins used for LCD interface, but if you use pins that are
setup as analog inputs at power-up on devices with A/D Converter and/or Comparator modules, you
should take control over the appropriate register(s) (ADCON1, ANSEL, CMCON) to set used pins as
digital I/O.

GLCDCLEAR statement will clear the whole display. It can be used with one optional constant
argument in the range 0-255 that will be placed on every byte position on the display (128x64
graphical displays are internaly divided in two 64x64 halves; both halves are divided in eight 64x8
horizontal pages; every page has its addressing number in the range 0-15; page in upper-left corner
has number 0; page in lower-left corner has number 7; page in upper-right corner has number 8;
page in lower-right corner has number 15; every page has 64 byte positions addressed with
numbers in the range 0-63; every byte position has 8 bits; the uppermost bit is LSB and the
lowermost bit is MSB). For example:
 GLcdinit
 loop:
 GLcdclear 0xaa
 WaitMs 1000
 GLcdclear 0x55
 WaitMs 1000
 Goto loop

GLCDPSET and GLCDPRESET statements are used to turn on and turn off one of the dots on the
graphical display. The first argument is the horizontal coordinate and it must be a byte data type
variable or constant in the range 0-127. The second argument is the vertical coordinate and it must
be a byte data type variable or constant in the range 0-63. The dot in the upper-left corner of the
display is the origin with coordinates 0,0. For example:
 Dim i As Byte
 Dim j As Byte
 GLcdinit
 For i = 0 To 127
 For j = 0 To 63
 GLcdpset i, j
 Next j
 Next i

GLCDCLEAN statement is used to clear a section of the page on the display. It has three
arguments. The first argument is page address and it must be a byte data type variable or constant
in the range 0-15. The second argument is the first byte position on the page that will be cleaned
and it must be a byte data type variable or constant in the range 0-63. The third argument is the last
byte position on the page that will be cleaned and it must be a byte data type variable or constant in

20

the range 0-63. If the last two arguments are omitted the whole page will be cleared. For example:
 Dim i As Byte
 GLcdinit
 GLcdclear 0xff
 For i = 0 To 15
 GLcdclean i
 WaitMs 500
 Next i

GLCDPOSITION statement is used to address a byte position on the display. It must be used before
any of the GLCDWRITE, GLCDIN, GLCDOUT and GLCDCMDOUT statements. The first argument
is page address and it must be a byte data type variable or constant in the range 0-15. The second
argument is the target byte position on the page and it must be a byte data type variable or constant
in the range 0-63. If the second argument is omitted, zero byte position is used.

GLCDWRITE statement is used to write text on the display. It will start writing from the current byte
position on the display. It must be used carefully, because when the byte position (63) of the page is
reached, the writing will continue from the byte position 0 staying on the same page. The width of
every character written is 5 byte positions plus one clear byte position. After the statement is
executed the current byte position will be at the end of the text written. GLCDWRITE statement may
have multiple arguments separated by ','. Strings, constants and byte variables can be used as its
arguments. Constants and variable values are interpreted as ASCII codes. If '#' sign is used before
the name of a variable (byte or word data type) then its decimal representation is written. For
example:
 Dim i As Byte
 GLcdinit
 For i = 0 To 15
 GLcdposition i, 0
 GLcdwrite "Page: ", #i
 WaitMs 250
 Next i

GLCDOUT statement is used to write the value of the byte variable or constant at the current byte
position on the display. The current byte position will be incremented by one. GLCDIN statement will
read the value from the current byte position on the display and put it in the byte variable specified
as its argument. GLCDCMDOUT statement is used to send low-level commands to the graphical
LCD. Its argument can be a constant or byte data type variable. All these three statements can be
used with multiple arguments separated by ','.

● Using internal PWM modules

Internal PWM modules (more precisely: PWM modes of CCP modules) are turned on using
PWMON statement. This statement has two arguments. The first argument is module number and it
must be a constant in the range 1-3. The second argument is used for mode selection. Internal
PWM module can be used on three different output frequencies for each of four duty cycle
resolutions supported by PWMON statement (10-bit, 9-bit, 8-bit and 7-bit). So, PWM module can be
turned on with PWMON statement in 12 modes. Here is the list of all modes at 4MHz clock
frequency (for other clock frequencies, the values should be proportionally adjusted):
mode 1: 10-bit, 244Hz
mode 2: 10-bit, 977Hz
mode 3: 10-bit, 3906Hz
mode 4: 9-bit, 488Hz
mode 5: 9-bit, 1953Hz
mode 6: 9-bit, 7813Hz
mode 7: 8-bit, 977Hz
mode 8: 8-bit, 3906Hz
mode 9: 8-bit, 15625Hz
mode 10: 7-bit, 1953Hz
mode 11: 7-bit, 7813Hz
mode 12: 7-bit, 31250Hz

21

The PWM module is initially started with 0 duty cycle, so the output will stay low until the duty cycle
is changed. PWM module can be turned off with PWMOFF statement. It has only one argument -
module number.

The duty cycle of PWM signal can be changed with PWMDUTY statement. Its first argument is
module number. The second argument is duty cycle and it can be a constant in the range 0-1023 or
byte or word data type variable. User must take care to use the proper value ranges for all PWM
modes (0-1023 for 10-bit resolution, 0-511 for 9-bit resolution, 0-255 for 8-bit resolution and 0-127
for 7-bit resolution). Here is one example example:
 Dim duty As Byte
 PWMon 1, 9
 loop:
 Adcin 0, duty
 PWMduty 1, duty
 Goto loop

● Interfacing Radio Control (R/C) servos

For writing applications to interface R/C servos there are two statements available: SERVOIN and
SERVOOUT. R/C servo is controlled by a train of pulses (15-20 pulses per second) whose length
define the position of the servo arm. The valid length of pulses is in the range 1-2ms. These two
statements have two arguments. The first argument of both statements is the microcontroller pin
where the servo signal is received or transmitted. For SERVOIN statement that pin should be
previously setup as an input pin and for SERVOOUT statement the pin should be setup for output.
The second argument of SERVOIN statement must be a Byte variable where the length of the pulse
will be saved. The pulses are measured in 10us units, so it is possible to measure pulses in the
range 0.01-2.55ms. The value stored in the variable for normal servos should be in the range 100-
200. The second argument of the SERVOOUT statement should be a Byte variable or constant that
determines the length of the generated pulse. For proper operation of the target servo SERVOOUT
statement should be executed 15-20 times during one second. Here is an example of the servo
reverse operation:
 Dim length As Byte
 TRISB.0 = 1
 TRISB.1 = 0
 loop:
 ServoIn PORTB.0, length
 If length < 100 Then length = 100
 If length > 200 Then length = 200
 length = length - 100
 length = 100 - length
 length = length + 100
 ServoOut PORTB.1, length
 Goto loop

● Interfacing Stepper Motors

Prior to using stepper motor related statements, its connection and desired drive mode should be
set up using DEFINE directives. There are eight available parameters to define the connection of A,
B, C and D coils:
STEP_A_REG - defines the port where A coil is connected to
STEP_A_BIT - defines the pin where A coil is connected to
STEP_B_REG - defines the port where B coil is connected to
STEP_B_BIT - defines the pin where B coil is connected to
STEP_C_REG - defines the port where C coil is connected to
STEP_C_BIT - defines the pin where C coil is connected to
STEP_D_REG - defines the port where D coil is connected to
STEP_D_BIT - defines the pin where A coil is connected to

Coils A and C are actually parts of one single coil with common connection. The same is valid for B
and D coil connections. There is also STEP_MODE parameter used to define the drive mode. If it is
set to 1 (default) the motor will be driven in full-step mode. The value 2 should be used for half-step

22

mode. The first basic statement that should be used is STEPHOLD. It will configure used pins as
outputs and also energize A and B coils to fix the rotor in its initial position. For moving rotor in
clockwise and counterclockwise directions there are STEPCW and STEPCCW statements
available. Their first argument is the number of rotor steps that will be performed and it can be Byte
data type constant or variable. The second argument defines the delay between consecutive steps
expressed in microseconds by a Byte or Word data type variable or constant. If using STEPCW
statement results in rotor movement in counterclockwise direction then connection settings for B and
D coils should be exchanged. Here are two examples (the second example uses delays suitable for
simulation in the simulator):
Example 1:
 AllDigital
 ADCON1 = 0x0e
 Define STEP_A_REG = PORTB
 Define STEP_A_BIT = 7
 Define STEP_B_REG = PORTB
 Define STEP_B_BIT = 6
 Define STEP_C_REG = PORTB
 Define STEP_C_BIT = 5
 Define STEP_D_REG = PORTB
 Define STEP_D_BIT = 4
 Define STEP_MODE = 2

 WaitMs 1000
 StepHold
 WaitMs 1000

 Dim an0 As Word

 loop:
 Adcin 0, an0
 an0 = an0 * 60
 an0 = an0 + 2000
 StepCW 1, an0
 Goto loop

Example 2:
 AllDigital
 Define STEP_A_REG = PORTB
 Define STEP_A_BIT = 7
 Define STEP_B_REG = PORTB
 Define STEP_B_BIT = 6
 Define STEP_C_REG = PORTB
 Define STEP_C_BIT = 5
 Define STEP_D_REG = PORTB
 Define STEP_D_BIT = 4
 Define STEP_MODE = 2

 WaitUs 300
 StepHold
 WaitUs 1000

 loop:
 StepCCW 16, 300
 WaitUs 1000
 StepCW 24, 300
 WaitUs 1000
 Goto loop

● Interfacing 1-WIRE devices

Prior to using 1-WIRE related statements, user should define the pin where the device is connected

23

to using DEFINE directives. Available parameters are 1WIRE_REG and 1WIRE_BIT. For example:
 Define 1WIRE_REG = PORTB
 Define 1WIRE_BIT = 0

Initialization sequence can be performed by 1WIREINIT statement. It can have an optional
argument (Bit data type variable) that will be set to 0 if the presence of the device has been detected
and set to 1 if there is no device on the line.

Individual bits (time slots) can be sent to and received from the device using 1WIRESENDBIT and
1WIREGETBIT statements. Both statements can have multiple arguments - comma separated list of
Bit data type variables (or Bit constants for 1WIRESENDBIT statement).

1WIRESENDBYTE and 1WIREGETBYTE statements can be used to send to and receive bytes
from the device. Both statements can have multiple arguments - comma separated list of Byte data
type variables (or Byte constants for 1WIRESENDBYTE statement). Here is one example for
measuring temperature using DS18S20 device:
 Dim finish As Bit
 Dim temp As Byte
 Dim sign As Byte

 1wireInit
 1wireSendByte 0xcc, 0x44
 WaitMs 1
 loop:
 1wireGetBit finish
 If finish = 0 Then Goto loop
 1wireInit
 1wireSendByte 0xcc, 0xbe
 1wireGetByte temp, sign

This example can be very short by using two DS18S20 specific high level basic statements.
DS18S20START statement will initiate a single temperature conversion. According to the device
datasheet the conversion will be completed in at most 750ms. After that period the measured value
can be read by DS18S20READT statement that requires two Byte data type variables as
arguments. The first argument will contain the temperature value in 0.5 degrees centigrade units (for
example, the value 100 represents the temperature of 50 degrees). The second argument will
contain the value 0x00 if the temperature is positive and 0xFF value if it is negative. For example:
 Dim temp As Byte
 Dim sign As Byte

 DS18S20Start
 WaitMs 1000
 DS18S20ReadT temp, sign

● Advanced features

If STARTFROMZERO directive is used the compiler will start the program from zero flash program
memory location (reset vector) and use the available program memory continuously. Interrupt
routine if used should be implemented by using inline assembler code. The compiler will also leave
control over PCLATH register to the user supposing that all code is placed in the same program
memory page. This advanced feature can be used when developing bootloader applications, for
example.

24

