
4 ATtiny13
2535B–AVR–01/04

AVR CPU Core

Introduction This section discusses the AVR core architecture in general. The main function of the
CPU core is to ensure correct program execution. The CPU must therefore be able to
access memories, perform calculations, control peripherals, and handle interrupts.

Architectural Overview Figure 3. Block Diagram of the AVR Architecture

In order to maximize performance and parallelism, the AVR uses a Harvard architecture
– with separate memories and buses for program and data. Instructions in the Program
memory are executed with a single level pipelining. While one instruction is being exe-
cuted, the next instruction is pre-fetched from the Program memory. This concept
enables instructions to be executed in every clock cycle. The Program memory is In-
System Reprogrammable Flash memory.

The fast-access Register File contains 32 x 8-bit general purpose working registers with
a single clock cycle access time. This allows single-cycle Arithmetic Logic Unit (ALU)
operation. In a typical ALU operation, two operands are output from the Register File,

Flash
Program
Memory

Instruction
Register

Instruction
Decoder

Program
Counter

Control Lines

32 x 8
General
Purpose

Registrers

ALU

Status
and Control

I/O Lines

EEPROM

Data Bus 8-bit

Data
SRAM

D
ire

ct
 A

dd
re

ss
in

g

In
di

re
ct

 A
dd

re
ss

in
g

Interrupt
Unit

Watchdog
Timer

Analog
Comparator

I/O Module 2

I/O Module1

I/O Module n

5

ATtiny13

2535B–AVR–01/04

the operation is executed, and the result is stored back in the Register File – in one
clock cycle.

Six of the 32 registers can be used as three 16-bit indirect address register pointers for
Data Space addressing – enabling efficient address calculations. One of the these
address pointers can also be used as an address pointer for look up tables in Flash Pro-
gram memory. These added function registers are the 16-bit X-, Y-, and Z-register,
described later in this section.

The ALU supports arithmetic and logic operations between registers or between a con-
stant and a register. Single register operations can also be executed in the ALU. After
an arithmetic operation, the Status Register is updated to reflect information about the
result of the operation.

Program flow is provided by conditional and unconditional jump and call instructions,
able to directly address the whole address space. Most AVR instructions have a single
16-bit word format. Every Program memory address contains a 16- or 32-bit instruction.

During interrupts and subroutine calls, the return address Program Counter (PC) is
stored on the Stack. The Stack is effectively allocated in the general data SRAM, and
consequently the Stack size is only limited by the total SRAM size and the usage of the
SRAM. All user programs must initialize the SP in the Reset routine (before subroutines
or interrupts are executed). The Stack Pointer (SP) is read/write accessible in the I/O
space. The data SRAM can easily be accessed through the five different addressing
modes supported in the AVR architecture.

The memory spaces in the AVR architecture are all linear and regular memory maps.

A flexible interrupt module has its control registers in the I/O space with an additional
Global Interrupt Enable bit in the Status Register. All interrupts have a separate Interrupt
Vector in the Interrupt Vector table. The interrupts have priority in accordance with their
Interrupt Vector position. The lower the Interrupt Vector address, the higher the priority.

The I/O memory space contains 64 addresses for CPU peripheral functions as Control
Registers, SPI, and other I/O functions. The I/O memory can be accessed directly, or as
the Data Space locations following those of the Register File, 0x20 - 0x5F.

ALU – Arithmetic Logic
Unit

The high-performance AVR ALU operates in direct connection with all the 32 general
purpose working registers. Within a single clock cycle, arithmetic operations between
general purpose registers or between a register and an immediate are executed. The
ALU operations are divided into three main categories – arithmetic, logical, and bit-func-
tions. Some implementations of the architecture also provide a powerful multiplier
supporting both signed/unsigned multiplication and fractional format. See the “Instruc-
tion Set” section for a detailed description.

