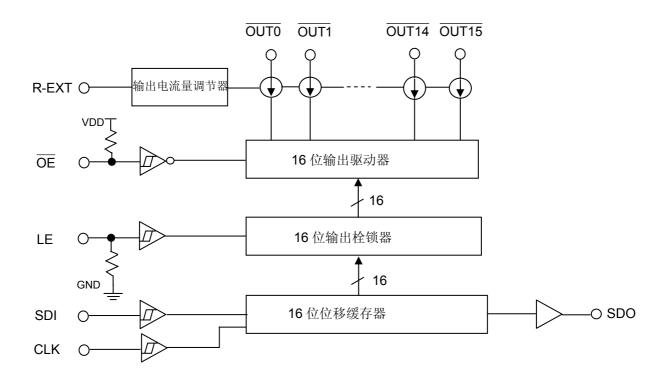

16 位恒流 LED 驱动器

特色

- 16 个等电流输出通道
- 等电流输出值不受输出端负载电压影响等电流范围值,
 - 3-45mA@V_{DD}=5V;
 - 3-30mA@V_{DD}=3.3V
- 极为精确的电流输出值,

通道间差异值: <±1.5%(一般值); <±2.5% (最大值); 芯片间差异值: <±1.5%(一般值); <±3.0% (最大值)。

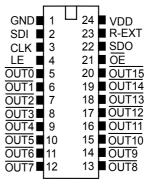
- 利用一个外接电阻,可设定电流输出值
- 快速的输出电流响应, OE: 70ns (保持输出一致性的条件下)
- 高达 25MHz 时钟频率
- 具 Schmitt trigger 输入装置
- 操作电压: 3.3/5 伏特
- "Pb-Free & Green"封装

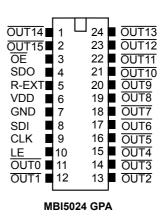

电流精确度	(最大差异值)	条件
通道间	芯片间	米 什
<±2%	<±3%	I _{OUT} =25mA @ V _{DS} =0.7V
<±2.5%	<±3%	I_{OUT} =3mA~30mA@V _{DS} =0.7V; V _{DD} =3.3V I_{OUT} =3mA~45mA@V _{DS} =0.7V; V _{DD} =5.0V

产品说明

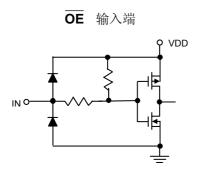
MBI5024 是利用最新 PrecisionDrive™技术,专为 LED 显示面板设计的驱动 IC,它内建的 CMOS 位移缓存器与栓锁功能,可以将串行的输入数据转换成平行输出数据格式。MBI5024 的输入电压范围值为 3.3 伏特至 5 伏特,提供 16 个电流源,可以在每个输出级提供 3 - 45 mA 定电流量以驱动 LED;且单一颗 IC 内输出通道的电流差异小于±2% @I_{OUT} =25mA, ±2.5%@I_{OUT} =3mA;多颗 IC 间的输出电流差异小于±3%;电流随着输出端耐受电压(V_{DS})变化,被控制在每伏特 0.1%;且电流受供给电压(V_{DD})、环境温度的变化也被控制在 1%。使用者可以经由选用不同阻值的外接电阻器来调整 MBI5024 各输出级的电流大小,藉此机制,使用者可精确地控制 LED 的发光亮度。

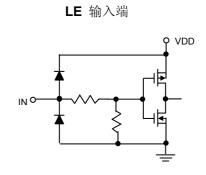
MBI5024 的设计保证其输出级可耐压 17 伏特,因此可以在每个输出端串接多个 LED。此外, MBI5024 亦提供 25MHz 的高时钟频率以满足系统对大量数据传输上的需求。

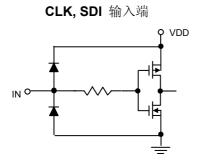

功能方块图

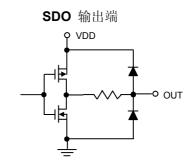

脚位说明

Pin 脚名称	功能
GND	控制逻辑及驱动电流之接地端。
SDI	输入至位移缓存器之串行数据输入端。
CLK	时钟讯号之输入端;资料位移会发生在时钟上升缘。
	数据闪控(data strobe)输入端。
LE	当 LE 是高电位时,串行数据会被传入至输出 栓锁器;当 LE 是低电位时,资料会被栓锁住。
OUT0~OUT15	等电流输出端。
	输出致能讯号端。
OF.	当 OE 是低电位时,即会启动 OUT0 ~ OUT15
OE	输出;当 OE 是高电位时,OUT0~OUT15 输出会被关闭(不驱动电流)。
SDO	串行数据输出端;可接至下一个驱动器之 SDI端。
R-EXT	连接外接电阻之输入端;此外接电阻可设定所有输出通道之输出电流。
VDD	3.3V/5V 电源供应端。

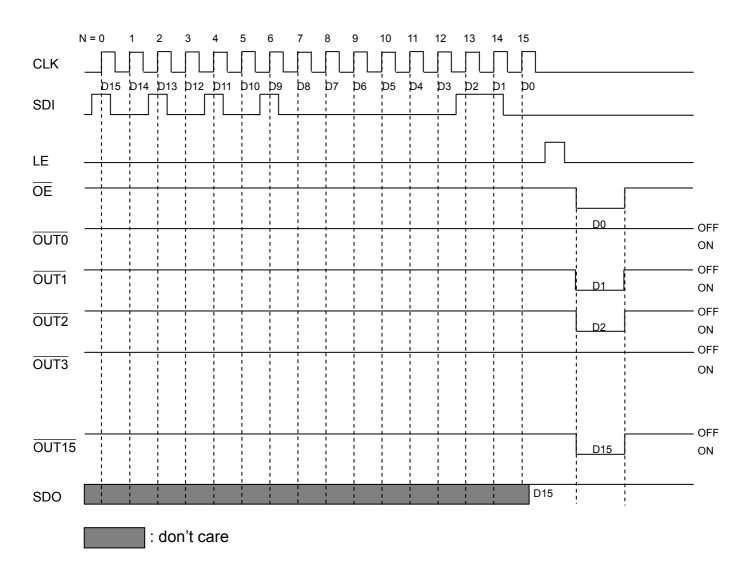

脚位图




MBI5024 GF\GP



输入及输出等效电路



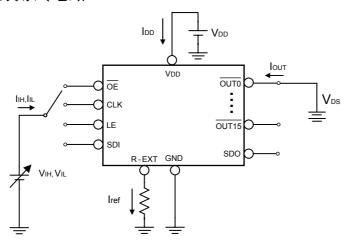
时序图

真值表

CLK	LE	ŌĒ	SDI	OUT0 OUT7 OUT15	SDO
<u>_</u>	Н	L	D _n	<u>Dn</u> <u>Dn - 7</u> <u>Dn - 15</u>	D _{n-15}
	L	L	D _{n+1}	不变	D _{n-14}
	Н	L	D _{n+2}	<u>Dn+2</u> <u>Dn-5</u> <u>Dn-13</u>	D _{n-13}
—	Х	L	D _{n+3}	<u>Dn+2</u> <u>Dn-5</u> <u>Dn-13</u>	D _{n-13}
	Х	Н	D _{n+3}	使LED不亮	D _{n-13}

最大限定范围

特性	代表符号	最大限定范围	单位	
电源电压		V_{DD}	0~7.0	V
输入端电压		V _{IN}	-0.4~ V _{DD} +0.4	V
输出端电流		I _{OUT}	+45	mA
输出端耐受电压		V _{DS}	-0.5~+17.0	V
接地端电流		I _{GND}	720	mA
	GF-type		2.35	
消耗功率(在印刷电路板上,25°C时)	GP-type	P_{D}	1.76	W
	GPA-type		1.76	
	GF-type		53.28	
热阻值(在印刷电路板上,25°C时)	GP-type	$R_{th(j-a)}$	70.90	°C/W
	GPA-type		70.90	
IC 工作时的环境温度	T _{opr}	-40~+85	°C	
IC 储存时的环境温度		T _{stg}	-55 ~ +150	°C


直流特性(V_{DD}= 5.0V)

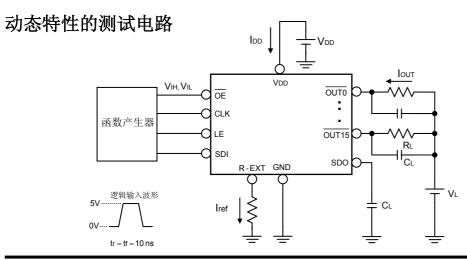
特性		代表符号	量》		最小值	一般值	最大值	单位
电源电压		V_{DD}		-	4.5	5.0	5.5	V
输出端耐受电压		V _{DS}	OUT0~OUT	15	-	-	17.0	V
		I _{OUT}	参考直流特性	上的测试电路	3	-	45	mA
输出端电流		I _{OH}	SDO		-	-	-1.0	mA
		I _{OL}	SDO		-	-	1.0	mA
输入端电压	高电位位准	V _{IH}	Ta=-40~85°C		0.7*V _{DD}	-	V_{DD}	V
制八 编电压	低电位位准	V _{IL}	Ta=-40~85°C		GND	-	0.3*V _{DD}	V
输出端漏电流		I _{OH}	V _{DS} =17.0V		-	-	0.5	μΑ
输出端电压	SDO -	V_{OL}	I _{OL} =+1.0mA		-	-	0.4	٧
制山坳电压	300	V_{OH}	I _{OH} =-1.0mA		4.6	-	-	٧
输出电流1		I _{OUT1}	V _{DS} =1.0V	R _{ext} =6000 Ω	-	3.1	-	mA
电流偏移量		dl _{OUT1}	I _{OL} =3.1mA V _{DS} =1.0V R _{ext} =6000 Ω		-	±1.5	±2.5	%
输出电流 2		I _{OUT2}	V _{DS} =1.0V	R _{ext} =720 Ω	-	25.8	-	mA
电流偏移量		dl _{OUT2}	I _{OL} =25.8mA V _{DS} =1.0V	R _{ext} =720 Ω	-	±1.5	±2	%
电流偏移量 vs.	输出电压	%/dV _{DS}	输出电压=1.0	0~3.0V	-	±0.1	-	%/V
电流偏移量 vs.	电源电压	%/dV _{DD}	电源电压=4.5	5~5.5V	-	-	±1.0	%/V
Pull-up电阻		R _{IN} (up)	-	ŌĒ	250	500	800	ΚΩ
Pull-down电阻		R _{IN} (down)		LE	250	500	800	ΚΩ
			R _{ext} =未接, ō	OUTO ~ OUT15 =Off	-	2	2.8	
	"OFF"	I _{DD} (off) 2	R _{ext} =1240 Ω, ¯C	OUTO ~ OUT15 =Off	-	4	4.8	
电压源输出电流	[I _{DD} (off) 3	R_{ext} =620 Ω , $\overline{\Omega}$	OUTO ~ OUT15 =Off	-	6	6.8	mA
	"ON"	I _{DD} (on) 1	R _{ext} =1240 Ω, ¯C	OUTO ~ OUT15 =On	-	5.2	8.2	
	ON	I _{DD} (on) 2	R_{ext} =620 Ω , $\overline{\Omega}$	OUTO ~ OUT15 =On	-	6.5	9.5	

直流特性(V_{DD}= 3.3V)

特性		代表符号	量		最小值	一般值	最大值	单位
电源电压		V_{DD}		-	3.0	3.3	4.5	V
输出端耐受电压		V_{DS}	OUT0~OU	T15	-	=	17.0	V
		I _{OUT}	参考直流特性	生的测试电路	3	-	30	mA
输出端电流		I _{OH}	SDO		-	-	-1.0	mA
		I _{OL}	SDO		-	-	1.0	mA
输入端电压	高电位位准	V _{IH}	Ta=-40~85°	С	0.7*V _{DD}	-	V_{DD}	V
制八 编电压	低电位位准	V _{IL}	Ta=-40~85°	С	GND	-	0.3*V _{DD}	V
输出端漏电流		I _{OH}	V _{DS} =17.0V		-	-	0.5	μΑ
输出端电压	SDO -	V_{OL}	I _{OL} =+1.0mA		-	-	0.4	V
湘山坳电压	300	V_{OH}	I _{OH} =-1.0mA		2.9	-	-	V
输出电流1		I _{OUT1}	V _{DS} =1.0V	R _{ext} =6000Ω	-	3.1	-	mA
电流偏移量		dl _{OUT1}	I _{OL} =3.1mA V _{DS} =1.0V R _{ext} =6000Ω		-	±1.5	±2.5	%
输出电流 2		I _{OUT2}	V _{DS} =1.0V	R _{ext} =720Ω	-	25.8	-	mA
电流偏移量		dl _{OUT2}	I _{OL} =25.8mA V _{DS} =1.0V	R _{ext} =720Ω	-	±1.5	±2	%
电流偏移量 vs.	输出电压	%/dV _{DS}	输出电压=1.	0~3.0V	-	±0.1	-	%/V
电流偏移量 vs.	电源电压	%/dV _{DD}	电源电压=3.	0~3.6V	-	-	±1.0	%/V
Pull-up电阻		R _{IN} (up)		ŌĒ	250	500	800	ΚΩ
Pull-down电阻		R _{IN} (down)	LE		250	500	800	ΚΩ
		I _{DD} (off) 1	R _{ext} =未接, ō	UT0 ~ OUT15 =Off	-	1.7	2.3	
	"OFF"	I _{DD} (off) 2	R _{ext} =1851Ω, \bar{c}	OUTO ~ OUT15 =Off	-	3.9	4.5	
电压源输出电流		I _{DD} (off) 3	R_{ext} =748 Ω , \bar{C}	OUTO ~ OUT15 =Off	-	5.2	5.8	mA
	"ON!"	I _{DD} (on) 1	R _{ext} =1851Ω, d	OUTO ~ OUT15 =On	-	3.9	4.5	
	"ON" -	I _{DD} (on) 2		OUTO ~ OUT15 =On	-	5.2	5.8	

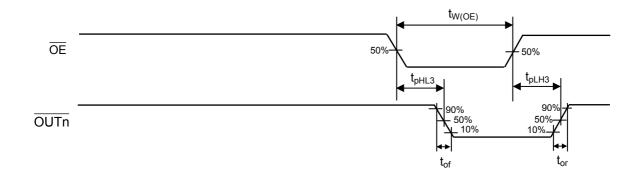
直流特性的测试电路

动态特性(V_{DD}= 5.0V)


特	性	代表符号	量测条件	最小值	一般值	最大值	单位
	CLK-OUT2n	4		-	50	70	ns
延迟时间	CLK-OUT2n + 1	t _{pLH1}		-	35	55	ns
	LE-OUT2n	4		-	50	70	ns
延迟时间 (低电位到高电位)	LE-OUT2n + 1	t _{pLH2}		-	35	55	ns
(网络区区对间,区区)	OE - OUT2n	4		-	50	70	ns
	OE - OUT2n + 1	t _{pLH3}		-	35	55	ns
	CLK-SDO	t _{pLH}		-	20	40	ns
	CLK-OUT2n			-	90	110	ns
	CLK- OUT2n + 1	t _{pHL1}		-	75	95	ns
	LE-OUT2n	4		-	90	110	ns
延迟时间 (高电位到低电位)	LE-OUT2n + 1	t _{pHL2}		-	75	95	ns
	OE - OUT2n	t _{pHL3}	V_{DD} =5.0V V_{DS} =1.0V V_{IH} = V_{DD} V_{IL} =GND R_{ext} =930 Ω	-	90	110	ns
	OE - OUT2n + 1			-	75	95	ns
	CLK-SDO	t _{pHL}		-	20	40	ns
	CLK	t _{w(CLK)}	$V_L=4.5V$	20	ı	-	ns
脉波宽度	LE	$t_{w(L)}$	R_L =162 Ω C_L =10pF	20	-	-	ns
	OE *	t _{w(OE)}	OL TOP	70	100	-	ns
LE的Hold Time		t _{h(L)}		30	-	-	ns
LE的Setup Time		t _{su(L)}		5	-	-	ns
SDI的Hold Time		t _{h(D)}		5	-	-	ns
SDI的Setup Time	DI的Setup Time			3	-	-	ns
CLK讯号的最大爬升时间		t _r		-	-	500	ns
CLK讯号的最大下降时间		t _f		-	-	500	ns
SDO的爬升时间		t _{r,SDO}		-	10	-	ns
SDI的下降时间		$T_{f,SDO}$		-	10	-	ns
电流输出埠的电位爬升	计时间	t _{or}		-	40	-	ns
电流输出埠的电位下降	峰时间	t _{of}		-	55	-	ns

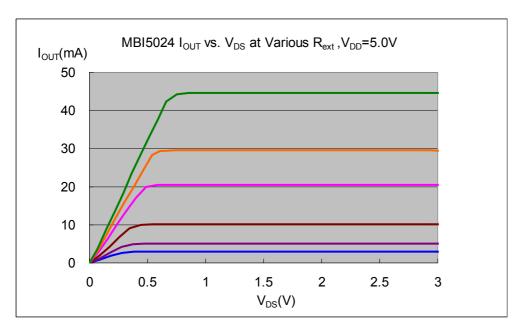
^{*}此值之条件为,输出通道保持一致响应条件下的最短 OE。

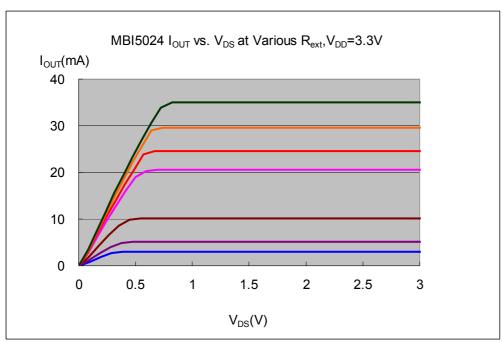

^{**}奇数通道 OUT2n+1 (e.g. OUT1, OUT3, OUT5, etc.)与偶数通道 OUT2n (e.g. OUT2, OUT4, OUT6, etc.)间的延迟时间为 35ns. MBI5024 内建延迟电路功能, 可将奇数与偶数的输出通道在不同的时间导通来降低电源线的电流量.


动态特性(V_{DD}= 3.3V)

特	性	代表符号	量测条件	最小值	一般值	最大值	单位
	CLK-OUT2n	4		-	50	70	ns
	CLK-OUT2n + 1	t _{pLH1}		-	35	55	ns
	LE-OUT2n	4		-	50	70	ns
延迟时间 (低电位到高电位)	LE-OUT2n + 1	t _{pLH2}		-	35	55	ns
	OE - OUT2n	+		-	50	70	ns
	OE - OUT2n + 1	t _{pLH3}		-	35	55	ns
	CLK-SDO	t _{pLH}		-	20	40	ns
	CLK-OUT2n	+		-	115	135	ns
	CLK-OUT2n + 1	t _{pHL1}		-	100	120	ns
74 10 0 10 1	LE-OUT2n	t		-	115	135	ns
延迟时间 (高电位到低电位)	LE-OUT2n + 1	t _{pHL2}		-	100	120	ns
(国,尼达为16/6位)	OE - OUT2n	t _{pHL3}	$\begin{array}{c} V_{DD}{=}3.3V \\ V_{DS}{=}1.0V \\ V_{IH}{=}V_{DD} \\ V_{IL}{=}GND \\ R_{ext}{=}930\Omega \\ V_{L}{=}3.0V \end{array}$	-	105	125	ns
	OE - OUT2n + 1			-	90	110	ns
	CLK-SDO	t _{pHL}		-	20	40	ns
	CLK	t _{w(CLK)}		20	ı	ı	ns
脉波宽度	LE	t _{w(L)}	$R_L=100\Omega$ $C_L=10 pF$	20	-	-	ns
	ŌĒ	t _{w(OE)}	σ <u>ι</u> .σ ρ .	100	130	-	ns
LE的Hold Time		t _{h(L)}		30	-	-	ns
LE的Setup Time		t _{su(L)}		5	-	-	ns
SDI的Hold Time		t _{h(D)}		5	-	-	ns
SDI的Setup Time	SDI的Setup Time			3	-	-	ns
CLK讯号的最大爬升时间		t _r		_	-	500	ns
CLK讯号的最大下降时间		t _f		-	=	500	ns
SDO的爬升时间		t _{r,SDO}		-	10	-	ns
SDI的下降时间		$T_{f,SDO}$		-	10	-	ns
电流输出埠的电位爬升		t _{or}		-	40	-	ns
电流输出埠的电位下降	译时间	t _{of}		-	60	-	ns

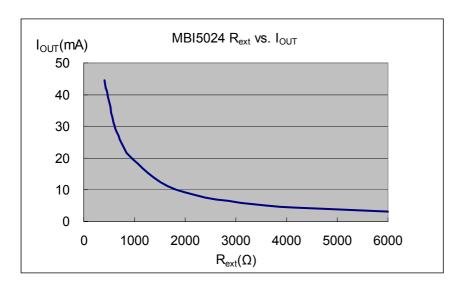
时序的波形图




应用信息

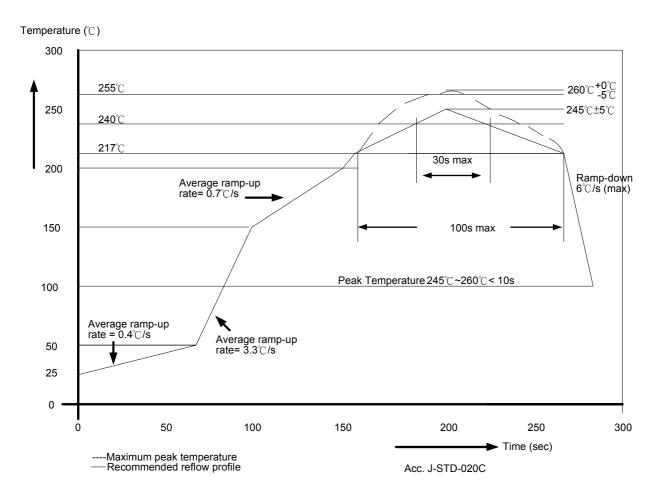
恒流

当客户将 MBI5024 应用于 LED 面板设计上时,通道间与通道间,甚至芯片与芯片间的电流,差异极小。此源自于 MBI5024 的优异特性:


- 1) 通道间的最大电流差异小于±2.5%,而芯片间的最大电流差异小于±3%。
- 2) 具有不受负载端电压影响的电流输出特性,如下图所示。输出电流的稳定性将不受 LED 顺向电压(V_F)变化而影响。

调整输出电流

如下图所示,藉由外接一个电阻 Rext 调整输出电流(lour)。


套用下列公式可计算出输出电流值,

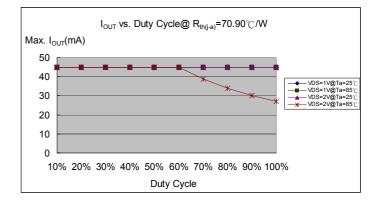
 V_{R-EXT} =1.24V; I_{OUT} = V_{R-EXT} *(1/Rext)x15; R_{ext} =(V_{R-EXT} / I_{OUT})x15

公式中的 V_{R-EXT} 是指 R-EXT 端的电压值, R_{ext} 是指外接至 R-EXT 端的电阻值。当电阻值是 744Ω ,透过公式计算可得输出电流值 $25mA_{i}$ 当电阻值是 1860Ω 时,输出的电流则为 10mA。

"Pb-Free & Green"封装之焊接制程*

聚积科技所生产的" Pb-Free & Green"的半导体产品遵循欧洲 RoHS 标准,封装选用 100%之纯锡以兼容于目前锡铅 (SnPb)焊接制程,且支持需较高温之无铅制程。纯锡目前已被欧美及亚洲区的电子产品客户与供货商广泛采用,成为 取代含锡铅材料的最佳替代品。100%纯锡可生产于制程温度为 215°C 至 240°C 的含锡铅(SnPb)锡炉制程。但若客户使用完全无铅锡膏和材料,则锡炉温度须达 J-STD-020C 标准之 245°C 至 260°C (参阅下图),。

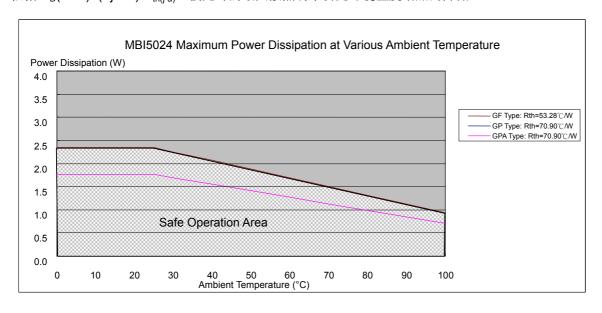
*附注 1: 详情请参阅聚积科技之"Policy on Pb-free & Green Package"。


封装体散热功率 (P_D)

封装体的最大散热功率,是由公式 P_D(max)=(Tj-Ta)/R_{th(j-a)}来决定。当 16 个通道同时打开时,真正的功率为 P_D(act)=(I_{DD}xV_{DD})+(I_{OUT}xDutyxV_{DS}x16)。

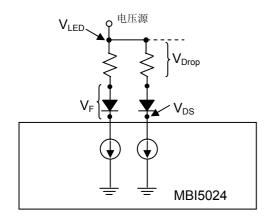
为保持 P_D(act)≤P_D(max),可输出的最大电流与 duty cycle 间的关系为:

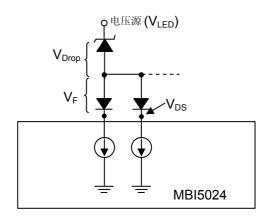
 I_{OUT} ={[[(Tj-Ta)/R_{th(j-a)}]-(I_{DD}xV_{DD})}/V_{DS}/Duty/16,其中 Tj=150°C。

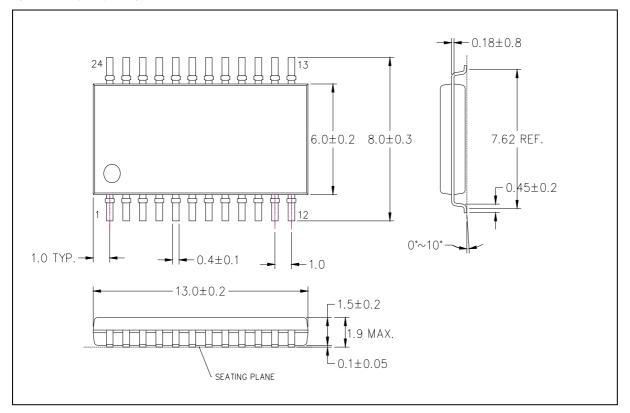


MBI5024GF

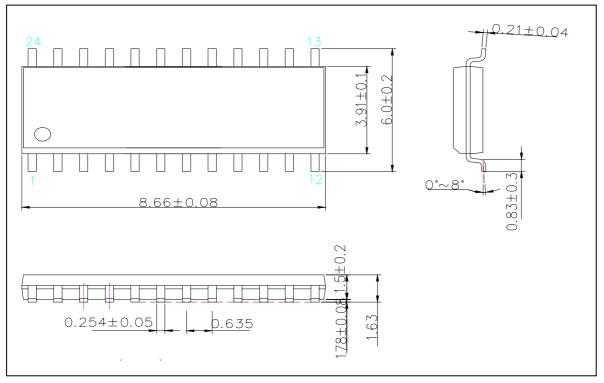
MBI5024GP/GPA


Condition: I _{OUT} =50mA, 16 output channels				
Device Type	$R_{th(i-a)}$ (°C/W)			
GF	53.28			
GP/GPA	70.90			

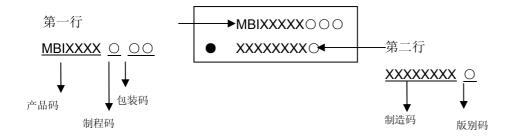

依据 $P_D(max)=(Tj-Ta)/R_{th(i-a)}$,被允许的最大散热功率会随环境温度增加而降低。


负载端供应电压 (VLED)

为使封装体散热能力达到最佳化,建议输出端电压(V_{DS})的最佳操作范围是 0.4V~0.8V(I_{OUT} =3~35mA)。如果 V_{DS} = V_{LED} - V_F 且 V_{LED} =5V 时,此时过高的输出端电压(V_{DS})可能会导致 P_D (act)> P_D (max);在此状况,建议尽可能使用较低的 V_{LED} 电压供应,也可用外串电阻或 Zener diode 当做 V_{DROP} 。此可导致 V_{DS} =(V_{LED} - V_F)- V_{DROP} ,达到降低输出端电压(V_{DS})之效果。外串电阻或 Zener 的应用图可参阅下图。



外观轮廓图示


MBI5024GF 轮廓图示

MBI5024GP \ GPA 轮廓图示

注:轮廓图标的单位是 mm。

IC 正印信息

产品更新纪录

文件版次	IC 版别码
V1.00	Α
VA.00	Α
VA.01	В
VA.02	В

产品订购信息

产品编号	包装型态	重量(g)
MBI5024GF	SOP24L-300-1.00	0.28
MBI5024GP	SSOP24L-150-0.64	0.11
MBI5024GPA	SSOP24L-150-0.64	0.11

使用权声明

聚积科技对于产品、文件以及服务保有一切变更、修正、修改、改善、以及终止的权利,针对上述的权利,聚积科技不会进行事前预告。客户在进行产品购买前,建议与聚积科技业务代表联络以取得最新的产品信息。

聚积科技的产品,除非经过聚积合法授权,否则不应使用于医疗或军事行为上,若使用者因此导致任何身体伤害或生命威胁甚至死亡,聚积科技将不负任何损害赔偿责任。

此份文件上所有的文字内容、图片、及商标为聚积科技所属之智慧财产。除非是先经过聚积合法授权,任何人不得径自使用、修改、重制、公开、改作、散布、发行、公开发表。如有违反,您应对聚积科技股份有限公司负责损害赔偿责任及其它法律责任。