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MAT290H1F – 2011 Application Exercise #2: Laplace Transforms and Impulse Response 
 

Introduction 

In the first application exercise we found that we could characterize a RLC circuit with a unique 
Green’s function.  This function, ݐ)ܭ,  was then used to find the output of that circuit for two ,(ݑ
types of input voltage functions, i.e., ݒௌଵ(ݐ) = 5ܴௌݐܥܮ	 V and ݒௌଶ(ݐ) = 2ܴௌି݁ܥܮఉ௧ V.   
 

The main advantage of the Green’s function is that it does not depend on the input function, so 
it can be used to find the output for any type of input voltage if the circuit is linear. 
 

This application exercise is based on the use of Laplace transforms to analyze the same linear 
RLC circuit, or network.  To do this we will introduce the concept of the impulse response of a 
network, which is closely related to the Green’s function for a network. 
 
The Impulse Response 

In order to properly define the impulse response of a network, we must first define the unit 
impulse function, δ(t).  This is also called the Dirac delta function and is discussed in greater 
detail in Section 4.5 of your textbook.  This function is defined by the two statements: 

ݐ)ߜ − (଴ݐ = 	 ൝ 0 ݐ < ݂݀݁݊݅݁݀݊ݑ଴ݐ ݐ = ଴0ݐ ݐ > ׬     ଴      andݐ ݐ)ߜ(ݐ)݂ − ஶିஶݐ݀(଴ݐ =  (଴ݐ)݂
The second statement is called the sifting or sampling property of the unit impulse function 
because it “pulls out” the value of ݂(ݐ) at ݐ଴.  The peculiarity of ݐ)ߜ − ݐ)ߜ ଴ but when it is integrated from −∞ to +∞ the area underݐ ଴) is that it is undefined atݐ −  ଴) is 1.  When this was firstݐ
introduced in 1927 by the physicist Paul Dirac, mathematicians were initially very sceptical 
about its validity as a properly defined function.  Nevertheless, it was very useful in solving 
physical problems, which made it popular with engineers and physicists, so it gained 
widespread use.  Eventually, in the 1940s it was properly defined by the mathematician Laurent 
Schwartz.   

An important property of the unit impulse function is that its Laplace transform, with ݐ଴ = 0, is 

ሽ(ݐ)ߜሼܮ = න ݁ି௦௧ݐ݀(ݐ)ߜஶ
଴ = ݁ି௦(଴) = 1 

which follows from the sampling property.  With this property, we can now define the impulse 
response of a linear network: 

The impulse response of a linear network, ℎ(ݐ), is the “output” of the network when the 
“input” of the network is the unit impulse function, (ݐ)ߜ, and all initial conditions are zero. 

Given this, the impulse response for the RLC network of Application Exercise #1 is related to 
the Green’s function for that network through this equation, since ݂(ݑ) = (ݐ)݅௅௣	in this case: (ݑ)ߜ	 = ℎ(ݐ) = න ,ݐ)ܭ (ݑ ൤(ݑ)ߜܴௌܥܮ൨ ௧ݑ݀

଴  
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Application Exercise #2: Laplace Transforms  

As a concrete example, let us reconsider a modified version of the RLC circuit of Application Exercise #1: 

 

 

 
 
 

 

we will define the “output” of this RLC network as the current through the realistic inductor, ݅௅(ݐ), and 
the “input” is the voltage source, ݒௌ(ݐ).   
We can now characterize this RLC network with its impulse response, ℎ(ݐ), by finding the output ݅௅(ݐ) = ℎ(ݐ) when the input is the unit impulse function, ݒௌ(ݐ) =  In essence, the impulse  .(ݐ)ߜ
response tells us how this circuit behaves if we turn the voltage source on and off in an infinitesimally 
small amount of time.  Or in other words, it gives the current ݅௅(ݐ) if the circuit is subjected to an 
extremely short burst of energy. 

(a)  One method which can be used to find the impulse response of a network is to “excite” the 
network with the unit impulse function and then solve the resulting initial-value problem.  
Therefore, for this RLC circuit, use Laplace transform techniques to solve the initial-value 
problem given by: 

  ݅௅ᇱᇱ + ௅ᇱ݅ܣ + ௅݅ܤ = ௅(0)݅					(ݐ)ߜܦ = 	0	A, ݅௅ᇱ(0) = 0	A/s   Eqn. 1 

 where ܣ = ቀோಽ௅ + ோೄାோ಴ோೄோ಴஼ቁ, ܤ = ቂ ଵ௅஼ + (ோೄାோ಴)ோಽோೄோ಴௅஼ ቃ, and ܦ = ଵோೄ௅஼, to find ܫ௅(ݏ) = (ݏ)ܪ = ℒሼℎ(ݐ)ሽ.  
Note that the input source is the unit impulse function, and that the initial conditions are 
zero, which are the two key requirements needed to find the impulse response ℎ(ݐ).   
 
Find both the impulse response of this circuit, ℎ(ݐ), and its Laplace transform, (ݏ)ܪ.  Your 
answer for (ݏ)ܪ should be expressed in terms of ܤ ,ܣ, and ܦ.  You can express your 
answer for ℎ(ݐ) in terms of ܦ and the roots of the denominator of ݌ ,(ݏ)ܪଵ and ݌ଶ.  Make 
sure you clearly state how these roots ݌ଵ and ݌ଶ relate to ܣ and ܤ. 
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Application Exercise #2: Laplace Transforms (cont’d)  

Part (a) (continued) 
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Application Exercise #2: Laplace Transforms (cont’d)  

(b)  The Laplace transform of the impulse response, (ݏ)ܪ, is called the transfer function of a 
network.  This is because in the ݏ-domain, it relates any input voltage function, ௌܸ(ݏ), to the 
output current function, ܫ௅(ݏ), i.e., ܫ௅(ݏ) = 	(ݏ)ܪ	 ௌܸ(ݏ), as long as the initial conditions are 
zero.  This means that in the time-domain the output is given as the convolution of the 
impulse response and the input signal, i.e., ݅௅(ݐ) = ℎ(ݐ) ∗ (ݐ)௦ݒ = ׬ ℎ(ݑ)ݒ௦(ݐ − ௧଴ݑ݀(ݑ . 

  Now consider the most general case, where the initial conditions are no longer zero, 
which means that the initial-value problem is now: 

  ݅௅ᇱᇱ + ௅ᇱ݅ܣ + ௅݅ܤ = ௅(0)݅			(ݐ)ௌݒܦ = ,A	ܧ	 ݅௅ᇱ(0) =   A/s   Eqn. 3	ܨ

 where ܧ and ܨ are real constants and ܤ ,ܣ, and ܦ are the same as defined above 

 Using Eqn. 3, show that the output, ܫ௅(ݏ), can be written as: 
(ݏ)௅ܫ  = (ݏ)ܪ(ݏ)ܩ +  (ݏ)ܪ(ݏ)ܳ
 where (ݏ)ܪ(ݏ)ܩ represents the zero-state response, which relates only to case of zero 

initial conditions but with the independent input source, ௌܸ(ݏ), connected.  While ܳ(ݏ)(ݏ)ܪ 
represents the zero-input response, which relates only to the initial “state” of the circuit 
(i.e., the initial conditions) but with the independent input source not  connected.  Clearly 
identify (ݏ)ܩ and ܳ(ݏ), and the zero-state and zero-input parts of the ݏ-domain response. 
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Application Exercise #2: Laplace Transforms (cont’d)  

Part (b) (continued) 
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Application Exercise #2: Laplace Transforms (cont’d)  

(c) In practical inductors, the resistance of the inductor, ܴ௅, depends on the value of the 
inductance, ܮ.  Generally, this is an direct proportion relationship and for this particular 
circuit the inductor’s resistance is given by ܴ௅ = 1 ×    .ଶ Ωܮ10଼

 Use MATLAB to determine the required value of ܮ, such that the complementary solution 
(i.e., the solution to the homogeneous differential equation:  ݅௅ᇱᇱ + ௅ᇱ݅ܣ + ௅݅ܤ = 0) is given 
as: ݅௅௖(ݐ) = ݁ିଵ଴଴ହ௧ሾܿଵ cos(7.071 × 10ସݐ) + ܿଶ sin(7.071 × 10ସݐ)ሿ 

 

 To do this, determine how the poles of the transfer function (ݏ)ܪ for this RLC network 
depend on the inductance ܮ, and how these poles relate to the complementary solution 
given above.  To support your conclusion include: 

i) A plot from MATLAB of the real parts of the two poles of (ݏ)ܪ versus the inductance ܮ and,  
ii) A plot from MATLAB of the imaginary parts of the two poles of (ݏ)ܪ versus the 

inductance ܮ.   

Your plots should cover the range of 1	μH ≤ ܮ ≤ 1	mH, and the other circuit elements are 
given by ܴௌ = 50 Ω, ܴ஼ = 5000 Ω, and ܥ = 20	μF.   

(d) Using your result for ܮ found in part (c), determine the output current, ݅௅(ݐ), for the 
following cases.  You can use MATLAB to determine the poles and residues needed to 
find the Laplace inverse transform (as described in MATLAB module #2), but you must 
clearly show your partial fraction expansion for ܫ௅(ݏ). 

i)  The input source is given as: ݒௌ(ݐ) = ൝ V0		ݐ05000 ݐ < 00 ≤ ݐ < 2	msݐ ≥ 2	ms  

and the circuit is initially uncharged, meaning that ݅௅(0+)	 = 	0 A and ݅௅ᇱ (0+)	 = 	0 A/s. 

ii)  The input source is the exact same as given above in part i), but the circuit has the 
initial conditions given by ݅௅(0 +)	 = 	0.5 A and ݅௅ᇱ (0+)	 = 	0 A/s (this initial condition 
comes from a source which is not shown in the circuit and is disconnected at ݐ = 0).  
For this case, use the plotyy or the subplot command in MATLAB to create a plot of 
the input ݒௌ(ݐ) and the output ݅௅(ݐ) on the same figure over the time range of 0	s ≤ ݐ ≤ 5	ms.  Make sure this plot is your own.  To solve this part, it will help to 
make use of your results from part (b).   
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Application Exercise #2: Laplace Transforms (cont’d)  

Parts (c) and (d) (continued) 

 

  



8 
 

Application Exercise #2: Laplace Transforms (cont’d)  

Parts (c) and (d) (continued) 

 

 

 

By signing below, I declare that this work is entirely my own. 

Signature:      Date:     


