Lecture 5

I. Operational calculus using the Fourier transformation
In Egs. (2.1)—(2.6), we have developed the harmonic analysis for the calculation of the frequency
domain transfer function if the input parameter (scalar or vector) is harmonic, i.e. it is proportional to

exp(tiwt) . However, the harmonic analysis becomes too intricate if the input parameters is proportional to
several exp(fim,t) with the different w, . For example, in the circuit shown in Fig. 1 (see also Appendix 2

in Lecture 2), we have two harmonic generators with two different frequencies.

Inductive coupling

Fig. 1 Two inductively connected contours with two harmonic generators.

For this circuit, we obtain:

Rely(t)+Ly d'ét(t) +M d'jt(t) =Vy(t)
€

(Ry+Rp)I2 () + Ly dlgt(t) +M dlét(t) =V, (t)

where V;(t) = Aexp(ziant) and V,(t) = Bexp(ziw,t). To solve this system of differential equations by

means of the harmonic  analysis, we have to represent the currents as
I1(t) =Cypexp(xiont) + Cpo exp(timpt) and 15 (t) =Coqexp(tiant) +Cor exp(tiwyt), where C,,, are
unknown complex amplitudes (four in total). Instead of this, we could try to apply the Fourier
transformation to the left and right parts of the system (1) to obtain the algebraic system for the Fourier

images. This Fourier transformation must be understood as a generalised one, and we will use Egs.

(4.25)—(4.28) for this purpose:

0 +00
f.(p)= j f (x)exp(—i p x)exp(ex)dx + j f (x)exp(—i p X) exp(—&x)dx
—o 0



+00

f (x)—— j f (p)exp(i px)exp(sp)dp+i j f (p)exp(i pX)exp(—z p)dp

f(p)= lim f.(p) (direct transformation)
-0

f(x)= lim f_(x) (inverse transformation)
-0

The properties (3.4) and (3.5) remain true for this generalised Fourier transformation. For example, Eqg.
(3.4):

&—0 B

0
Iim{ j dfd( )exp( ipx) exp(ex)dx + j exp( ipx) exp(— ex)dx}

df (0)

c—0

= Iim{dfd( )+(|p £) J'f(x)exp( ipx) exp(ex)dx — m +(ip+¢) If(x)exp( ipx) exp(— gx)dx}

—00

= I|m {(Ip £) If(x)exp( ipx)exp(ex)dx + (ip + &) _fof (x)exp(—ipx)exp(— gx)dx}
—©0 0

=ip nm{jf(x)exp( ipX) exp(&x)dx + jf(x)exp( ipX) exp(— gx)dx}—lp lim f,(p)

e—0 0

dnf (x)
dx"

Fourier transformation (generalised) to Eq. (1), we obtain the system of algebraic equation for the Fourier

And, for the generalised Fourier transformation of

, we obtain: (ip)" lim f.(p). Applying the
e—0

images (p=w):

Ry 11 (0) +ialy Iy (@) +ioMIi (w) =V (@) @
(Ry + R )l (@) +i0lsyl5 (0) +iaMiy (@) =V, (o)
This system can be written and solved in the matrix form:
Ii(ia))[ IAl(a))J = (Yl(w)j — is the generalised Ohm’s law 3)
I2(0)) \Va(w)
where
A R]_ + IL]_CO iMw A L.
R(iw)=| ~. ) — is the matrix impedance 4
iMoo R2+R|_ +|L2(0
F(w) = Ii_l(ia)) = [ Ifll(a)) 'f12 (w)j — is the matrix transfer function in the frequency domain (5)
Fo1(w) Fp(w)
( (w)J F(i )[Vl(w)J ['fll(w)xv}(@ i 512 (@) XV? (w)] — is the solution of (2) in the matrix form
() Va(@)) \ Far(@)xVi(@)+ Fpo (@) xVa (@)
(6)

(We do not calculate F(w) here)



Note that the matrix (4) can be obtained by means of the harmonic analysis with exp(+iwt)!

Therefore, the harmonic analysis can be used to derive the frequency domain transfer function (scalar
or vector). To find the currents in the time domain, we have to apply the inverse Fourier transformation
(generalised) to Eqg. (6) and use Eq. (3.7):

+00 +00
1 j ﬁll(a;)x\il(w)exp(ia)t)dmi j Fpo (@) xVy (w) exp(iot)do
27 © 27[_00

('10)): i -
| +oo iy
2t zi j ﬁ21(w)x\71(a>)exp(iwt)dw+2i j Foy (@) xVy (@) exp(iot)dw
T VA
o o (7)
[Fat-sVi(s)ds+ [Fp(t—s)V,(s)ds
=7 v
[Far(t=s)Va(s)ds+ [Fop(t—s)V,(s)ds

The first “spectral” form of Eq. (7)

+oo +00
i j ﬁll(a))x\il(a))exp(iwt)dm% j Fip (@) xVy (w) exp(iot)de
1 :EA . 1 IﬁA \
Py Ile(w)xvl(w)exp(iwt)dmg j Foo (@) xV, (w) exp(iot)dw
- —0

is more convenient when Vi, (t) are some periodical functions. In this case, we can use EQs.
(4.42)—(45) and Eq. (4.49). In our Eq. (1), V4 (t) = Aexp(fimt) and V, (t) = Bexp(tiw,t), and according to
Eq. (4.42), we obtain:
Vi (0) = 2778 (0 F ay)

. B 8
Vo (@) =2B6(0F wy)
Putting Eq. (8) into Eq. (7), we obtain:
( | 1(t)] :( Ax Fpq (o) xexp(iant) + B x Fyp (o) exp(tiont) ]
1o(t)) | Ax Fpp () xexp(Liaont) + B x Fpy (£, ) x exp(Fimot) (9)

Vout (1) = R x 15(t)
The concrete example considered above helps us to formulate the operational calculus in its most
general matrix form for any vector input Vi, (t) and output V,,;(t) parameters (compare with Egs. (2.27),

(2.57), and (2.6") in Lecture 2):

ﬁ[%j[\‘/out(t)]zvm(t) — is the initial system of linear differential equations describing a stationary linear

network (10)

Ii(m) = I5_1(+ia)) — iIs the matrix transfer function in the frequency domain (11)




+o0 .
Vout (1) =% J' F(@)Vin (w)exp(iot)dw — is the output signal in the spectral form (12)

—0

t
Vot (t) = Ili(t—s)vin(s)ds — is the output signal in the convolution form (13)

—00

where

| Is(t) is a square matrix, each element of which is a polynomial of some order
B F(w)=P l(+iw) is the inverse matrix with respect to P(+iw)
B P(+iw) is obtained from P(t) by means of the harmonic analysis with exp(+iat)

[ | \i/in(a)) is the generalised Fourier image of Vi, (t)

+00
n If(t>0)=2i _[If(w)exp(iwt)da) is the matrix transfer function in the time domain which must be
T

—0o0

calculated using Egs. (4.53)—(4.55)

The following table will be useful:

Fourier transformation Harmonic analysis Impedance analysis

Direct: ~ j (...)exp(—ipt)dt i

: g o
~ exp(+ipt) ¢ Co
Inverse: ~ [ (...)exp(+ipt)dp Z, =iol
Direct: ~ j (...)exp(+ipt)dt S,
~ exp(—ipt) ¢ Co
Inverse: ~ [(..)exp(~ipt)dp Z, =—ioL

I1. Transition processes
Let us demonstrate application of the operational calculus for the charge/discharge processes in a RC

circuit (see (2.10)). The main steps (see above):

rc MV ® +Ve (t) =V (t)
[ | dt — initial differential equation, where V (t) is the voltage across the
capacitor at the time moment t

m PO=RCt+1_ characteristic polynomial in the time domain




m P(H@)=IRCoO+1 _ cnaracteristic polynomial in the frequency domain (+ia )

1 1 1

F(o)=—<——=- = .
P(+iw) IRCw+1 iRC(a)—I]

— transfer function in the frequency domain

RC

[ | If(a)) has only one pole p; = é of the first degree and it does not have any growing or constant
part

B According to Eq. (4.55), res[lf(pl)]=ﬁ

B According to Eqg. (4.53), F(t>0) —%exp(— Lj

RC
. 1t (t—s)
B According to (3.8), V¢ (t) :E_J;Oexp(—ﬁjv (s)ds (14)
Since Vg(t)=RC dvgt(t) , we obtain:
~ 1 ¢ (t—s)
VR (t) =V (t) _E_L exp[— Y)V (s)ds (15)

In Eq. (15), we have used the following general formula for the derivative from the integral which depends

on a parameter t:

b(t) b(t)
jf(s s = | df((;’t)dwdb(t) (b(t),t)- d’;it) (a(t),t) (16)

Y at a(t) dt

, t<0 .. . . .
IfV(t)= {Vlz (50" where V; 5 are some constants (positive or negative), using Eq. (14) we obtain:

t . s=t
Ve (t<0) = j ( jds V. {exp(— (R_CS) ﬂ =V
S=—0o0

0
VC(t>O)=F\:—éJ'exp( (t= S)jdsjt Ie p( (t= S)jds_

[exp[— %)L}w +Vo {exp(— (tR;CS)JL;O =

t
=V, +(V1 -V, )exp(— E)




dVc (1) _RC dvy 0
dt

Vg (t<0)=RC

VR(t>0)=RC %{vz +(Vy Vs )exp[— Rt_Cﬂ =(V, —Vl)eXp(— Lj

RC
And, finally:

Ve (t<0)=V;

(17
Ve (t>0) =V + (1 -V, )exp(_ %j
VR(t<0)=0

(18)
Vr(t>0)=(v; _vl)exp[_ Rt_c j

Let us calculate the response on a single positive square pulse localised within the time interval

[t;,t2]. The pulse amplitude is V, and the offset is zero.

Ve(t<t)=0

Vel <t<ty)=_ Iexp( (R_C)j

1

RC

v, _
Ve (ty <t) = % Iexp[—ujds
tl

Calculating these integrals, we obtain:
Ve (t< tl) =0

VC (tl <t< t2) :Vp(l—exp(%n (19)

Vet <t)=V (exp[tzRCtj exp(%jj




VR(t<t;)=0

t -t
VR (tl <t< tz) =Vp eXp(TQ—Cj (20)

VR (tz St)=V (exp( RCtJ e p(téct]]

1, t>0 o .
Using the step function (t) = {O (<0’ Egs. (19) and (20) can be rewritten in the following form:
, t<

Ve (t) =Vp| 0(t—t1)0(t, —t)— (Ot —t,)O(t, —t) +O(t - tz))exp( Cjwa tz)exp( Ctﬂ (21)

VR(®)=V, (H(t t)6(t, )+ 6t — tz))exp[ cj ot - t2)exp(tzctﬂ 22)

For a periodical input parameter Vj,(t) =Vj,(t+T), where te[ty,tg+T], ty is the reference

time, and T is the period, the following equation can be derived:

t to+T
Vout (to <t<1p +T) =Voffset IF t—s)ds+ IF t-s) (Vm (8) —Voffset )js + IF t-s) (Vm (s) —Voffset )ds
—00 to to

(23)

o0
where F(t>0)= Y F(t+nT) is a periodical function, Vygser =Vin (tg) , and Vo (t) is a periodical output.
n=1

0
Since in many tasks F(t>0)= > F(t+nT) will be a combination of exponential functions (see an example
n=1

below), the integrals in Eq. 23 can be calculated analytically for different waveforms like square pulses,
saw-tooth waveform, and so on. Therefore, the final result will be obtained in a compact formula form. This
approach can be considered as an alternative to Eq. (1.10), where the output is represented in the

form of Fourier series:

A, 4
Vout (t) = F(0) 70 +
o0

+ kz_l[(ak Re[lf(a)k )]+ by Im[lf(a)k )] )cos(cokt)+(bk Re[lf(a)k )]— ay Im[lf(a)k )] )sin(a)kt)]

t
To prove Eqg. (23), we will start with IF(t—s)Vin(s)ds , Where Vj,(t) can be written in an equivalent form

—00

Vin(t) :Vin(to)"‘(vin(t) —Vin(to)):

t t t
[F(t=s)Vin(s)ds =Vin(to) [F(t—s)ds+ [F(t—s)Vin(s)—Vin (to))s

—0 —0o0 —0




In turn, the periodical function (Vi,(s)—Vin(tg)) can be represented for t<ty+T as the sum of the

in(t) - Vm(to)) telto—(k-)T,tg -T(k-2)] .

tetg—(k-DT,tg—T(k—2)] Since

piecewise functions (“pulses”) Vi(k)(t)‘ {O

Vout (t) is also a periodical function, it would be enough to calculate it only within t e[tg,tg+T]. The first

Vin(t)=Vin(tg)), teltg,top+T . ] L
pulse Vigl)(t):{(() m(tZz[t I:(i)T)] [to,fo +T] gives the following contribution to the total output
, L)

parameter:

t

out(t0<t<t0 +T)= IFt s)(Vin(s) = Vin(to) s .
)

t)—Vin(t te[tg—T,t9] . ) . .
The second pulse V2 (t) = ( in(®~Vin(to)).  telto~Tto] is shifted back by T with respect to the first
0, t%tE[to —T,to]

one and it gives:

t0
VB (tg <t<tg+T) = [Ft=5)Vin(s)~Vin(to) s = {g =5 +T}=
to—T
to+T
[FE+T —a)Vin(@=T)—Vin (to) Mg
to

Owing to the periodicity of Vj,(t), we obtain:

to+T
2
VER® = [Ft+T —s)Vin(s) ~Vin (to) s
t0
where we designate the integration variable q as s. If we continue this process, we obtain for k-th pulse:
to+T

Vit <t<tg+T) = [F(t+ (k=1 —3)Vin (8) ~Vin (to) s
t

t t ©
The final response is Vin (to) IF(t—s)ds+ IF(t—sXVin(s) —Vip(tg) s + ZVO(lljt) (t) or Eq. (23).
—0 to k=2

An example how to use Eq. 23 is considered below. For a periodical Vj,(t) and
1 t ,
F(t>0)=——exp| ——— |, we obtain:
RC RC

t
Voffset j F(t —5)ds =Vorrset

—o0

(t ) to+T

t
1
Ve (to <t<tg+T)=Voffset + =< RC IeXp[— ¥j<vm () —Voffset )js + J-F (t- S)(Vm (8) —Voffset )js

0 t0



where

. . exp

- 1 t+nT)) 1 t TY 1 t ( RCJ
E(t>0)=— - _ - LR R S

t>0=¢c Zexp( RC ] RC ex'o( Rc)nzzlex'o( RC} RC ex'o( chxlexp(-rj

n=1
RC

Here, we used the sum of a geometric series. Finally, we obtain:

t—s
Ve (to st <to+T) =Vofiset + -~ IeXp( ( RC )j( in (8) —Voffset )js +

. exp(— RTCj ty+T t—s) (24)
eXp(— YJ(Vin (S) —Voffset )js

. J
RC 1- exp(— Tj t
RC)

+

Using Eq. (24) for the RC network shown in Fig. 2, we can calculate its steady-state response for the

periodical square pulse excitation.

Coaxial cables

—

—_—C .
Pulse generator iy Ve(t) ) Oscilloscope
T=1/f is the period - Earth-to-Earth! -
f is the pulse frequency
/:\
T E is the pulse amplitude
T/2 T/2 | with respect to the ground level
. >

Time

Fig. 2 RC network.

E, teloT/2[

is the symmetrical (z) pulse excitation. According to Eq. (23),
_E, te[T/21] y () p g to Eq. (23)

The input signal Vi, (t) = {

Vofset =—E , and for tg =0 we obtain:




Ve (0<t<T)=-E jexp( (tRCS)j( in(s)+E)ds+

1 exp(‘Rch (t-s) )
+—x '[exp( j( in(s)+E)ds

RC 1_eﬂ{}T]0 RC
RC
To calculate the integrals in Eqg. (25), we have to divide the whole period into two intervals [0,T /2] and

[T/2,T]:

.
1)
vcm<t<T/a——E+%%-ep((“*)ds RC x(—0_9}5 (26)

+2E>< I e
RC RC ( Tj P
l-exp|———1| O
RC

0 RC
oxf -1 ) 11
-S 2E RC (t-s)
Ve (T/2<t<T) = d -—d 27
c(T ) Iex( }S+RC>< ( T]jexp( chs (27)
l-exp|———| O
C
Calculating the integrals in Egs. (26) and (27), we obtain:
2 t
Vec(0<t<T/2)=E- xEexp| —— (28)
( T j RC
1+exp| -
9] (o
Ve(T/2<t<T)=-E+ Eexp(——j (29)
( T J RC
1+exp| ———
2RC

The numerical calculations using Egs. (28) and (29) are demonstrated in Fig. 3.
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4r Initial pulse excitation
3t — V.
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Fig. 3 Pulse response of the RC network shown in Fig. 2, where E = 2.

For the symmetrical triangle waveform shown in Fig. 4, there are two different methods (at least) to

choose tg and Vgser N Eq. (23):

t t 3T/4
(@ {Vout (-T/4<t<3T/4) =Vosfset J F (t - S)ds + j F (t - S)(Vin (8) —Voffset )js + I F (t - S)(Vin (8) —Voffset )js
S T4 T/4

t T/2
(b) {vout (-T/2<t<T/2)= [F(t-sNin(s)ds+ [F(t—sVin(s)ds (30)
-T/2 -T/2



Two integration intervals in Eq. (23)

AN

Three integration intervals in Eq. (23)

AN

\4

(b)

Fig. 4 Symmetrical triangle waveforms prepared for the use in Eq. (23).

I11. The simplest switching voltage regulator

Transition processes in the RC (or RCL) circuits find a very important application in switching
regulators. In this section, we will consider the simplest one, shown in Fig. 5. In this switching regulator, a
DC input voltage E is modulated by means of the electronic switch which is driven by a pulse train with the

width Ty, and the pause T,. The output signal is a stable waveform V¢ (t) measured across the electrolytic
capacitor C and the load R| . In Fig. 5, the input resistance R;, includes the internal resistance of DC

source and the ON resistance of diode. Usually, R;, << R . In this switching regulator, we have two linear

networks for two diode’s conditions “”’ON” and “OFF”, respectively. When the diode is ON, we have the
fast charge network, shown in Fig. 6(a). And, when the diode if OFF, we have the slow discharge network,

shown in Fig. 6(b).



Diode

Rin

—
o
8
- + [S)
Electronic switch — R, >
-Ic =
— E =

1 Vin (t)
E

Tw T,

t\

Fig. 5 Switching voltage regulator driven by a square pulse train.

@

(b)

Fig. 6 Charge (a) and discharge (b) networks.



The charge and discharge networks are described by the following equations, which can be obtained
from Eq. (17):

Ve (t) =Vg x exp(— L] + ExRL X (1— exp[— LN — charge network (31)
Tin ) Rin+RL Tin

Ve (t) =V x exp(— Lj — discharge network (32)
T

: I . RinxRL | .
where Vg =V (0) is the initial voltage across the capacitor (or load), zjp =Cx(ﬁ] is the charge
int L

characteristic time, 7| =C xR is the discharge characteristic time, and E is the pulse amplitude (positive).
We can calculate the stable waveform amplitudes V7 and V5, shown in the Fig. 7, using the
periodicity condition:

T
V1 =Ve2 xexpl ——
7L

(33)
Veo =Veq xexp(— T—Wj+ ExR (1—exp[— T—WD
Tin) Rin+RL Tin
Solving this system of linear equations, we obtain:
T Ty XTin + Ty XT
exp[—pJ—exp[— p~tin w Lj
in X
Vg = ExRL L Tin X 7| (34)
Rin + R 1_exp{_ Tp x7in + Ty erJ
Tin X7TL
1—exp[—TW]
VCZ:REXRFE * T T—TT (35)
in + X Ti XT
in L 1—exp(— p~tin w Lj
Tin XTL
T
(1—exp(—p]}x[1—exp(—-r""n
. ExR T T
Rlpple :VCZ —VC]_Z R X+|£_ X I:I_ +T n (36)
. X Ti XT
in L 1—exp{— p~tin w Lj
Tin X7TL
T
(1+ exp[— pD X [1— exp(— T""B
T T
Average:VClJrVC2 - ExR = d (37)

2 " 2x(Rin+R Ty XTin+Tyw X7
( in L) l—exp[— p~éinT™lw Lj
Tin X7TL




A Stable waveform V. (t) shown schematically

Fig. 7 Stable output waveform measured across the capacitor.

Now we are able to reproduce the stable waveform V¢ (t) — a periodical piecewise continuous function:

Ve (t) =Veo x exp[— LJ — for the pause intervals (38)
T

Ve (t) =Vep xexp _t + ExR x| 1—exp _t — for the positive pulse intervals (39
Tin ) Rin+RL Tin

where V1 and Vi, are the amplitudes from Egs. (34) and (35). The whole periodical function V¢ (t) within

the period T =T, +T,, can be written in the following equivalent forms:

VC2 XeXp[—Lj, tE[O,Tp]

L
Ve (t>0)= (40)
_(t_Tp) ExRL W1 _(t_Tp)

VClxexp( - ]+Rin+RL (1 exp( - D telTp,(Ty+Tw)l

OR
EX L

VClxexp(——J+R_ X(l—exp(——n te[0,Ty]

Ve (t>0) - nJ Tt " (41)

(t-Tw)

], te[Tw, (Tw+Tp)l




IV. Ideal operational amplifier as a linear network

An operational amplifier (“op amp”) is a differential input, single ended output amplifier, as shown
symbolically in Fig. 8. This device is an amplifier intended for use with external feedback elements, where
these elements determine the resultant function, or operation. This gives rise to the name “operational
amplifier”. At this point, note that there is no need for concern with any actual technology to implement the

amplifier. Attention is focused more on the behavioral nature of this building block device.

POSITIVE SUPPLY IDEAL OP AMP ATTRIBUTES:
+ |nfinite Differential Gain

+ Zero Common Mode Gain
+ Zero Offset Voltage

+ Zero Bias Current

) O— +

INPUTS OF AMP OUTPUT

(4 O— —

OP AMP INPUTS:

High Input Impedance

Low Bias Current

Respond to Differential Mode Voltages
Ignore Common Mode Voltages

* # = »

OF AMP OUTPUT:
+ Low Source Impedance

NEGATIVE SUPPFLY

Fig. 8 The ideal op amp and its attributes.

We will consider an op amp as a linear network between its differential input signals and the
output. The transfer function of this network has the special name “gain”. An ideal op amp has infinite gain
for differential input signals. In practice, real devices will have quite high gain (also called open-loop gain)

but this gain would not necessary be precisely known. In terms of specifications, gain is measured in terms

of ~2UL and it is dimensionless. Here, Vi, is the differential input voltage and V,; is the output voltage.

n

\;out ()

Since in practice the gain depends on the frequency, it must be understood as the ratio A(a)) = V. (@)
inl@

where \70ut (w) and \7in(a)) are the complex amplitude for the corresponding harmonic signals. Also, an
ideal op amp has zero gain for signals common to both inputs, that is, common mode signals. The ideal op
amp also has zero offset voltage, and draws zero bias current at both inputs. In practice, another important
attribute is the concept of low source impedance at the output.

The basic op amp hookup of Fig. 9 applies a signal to the “+” input terminal, and a network
delivers a fraction of the output voltage to the “—" input terminal. This constitutes feedback, with the op amp

operating in closed loop mode. The feedback network can be resistive or reactive, linear or non-linear, or
any combination of these. For a linear feedback network, we will introduce the gain A3(w). In general, the

op amp gain depends not only on the frequency, but also on the amplitude of signals applied to the “+” input

terminals. This effect is non-linear, and hence it will result in some frequency distortions. When a sinusoidal



wave suffers non-linear distortions in an amplifier, the amplifier is in effect adding harmonics to the original

waveform. The negative feedback will significantly suppress these non-linear distortions.

T

I_____I

|
I
O +
A
INFUT
FEEDBACK OUTPUT
NETWORK
- | -k

Fig. 9 A generalised op amp circuit with feedback applied.

The concept of feedback is both an essential and salient point concerning op amp use. With feedback, the net
closed-loop gain characteristics become primarily dependent upon a set of external components (usually
passive). Thus behavior is less dependent upon the relatively unstable amplifier open-loop characteristics.
Note that in Fig. 9, the input signal is applied between the op amp “+” input and a common or reference
point, as denoted by the ground symbol. It is important to note that this reference point is also common to
the output and feedback network. By definition, the op amp stage’s output signal appears between the output
terminal/feedback network input, and this common ground. The emphasize how the input/output signals are
referenced to the power supply, dual supply connections are shown dotted, with the “+” power supply
midpoint common to the input/output signal ground. But do note, while all op amp application circuits may
not show full details of the power supply connections, every real circuit will always use power supplies.

The negative feedback reduces non-linear distortions by the same factor as it reduces gain (prove

this equation!):

At (w) = A)

=== (42)
1+ f(w) A(w)

where A(w) is the open-loop gain, A:(w) is the gain with a feedback, and |1+ B(w)A(w)|>1 is the
condition of “negative feedback™. If |1+ ﬁ(a)) A(a)) |<1, the feedback is termed “positive”, or “regenerative”.

For a positive feedback, |Af ()| will be greater than | A(w)|. Because of the reduced stability of an




amplifier with positive feedback, it is seldom used. For the amplifier stability, all the poles of Af (@) must

be located in the complex upper half plane. Although negative feedback appears to be the panacea for all

amplifier ailments it is important to note that it is only effective as long as the open-loop gain A(w) remains

much greater than the close-loop gain Af (w) . In this case, we obtain from Eq. (42):

A 1
A (0) = —

43
B(o) )

If the negative feedback is given too strong, the rise time (time for waveform to rise from 0.1 to 0.9 of its
steady-state value) is greatly decreased, but this improvement is obtained at the expense of a ringing
(oscillatory) response that is unacceptable for many applications.

For a perfectly balanced op amplifier, the output signal V; (t) can be calculated as:

t
Vout(®) = [ Ag (t=35)Vin (s)ds (44)
where
A (t>0)=2i [As (@ exp(iotdo== [(Re[As (@)]cos(wt)—Im[Ar (@) sin(ot) o (45)
T T
—0 O

(13

and Vj,(t) is the input signal between an input terminal (“+” or ) and the reference point (ground).

According to Eq. (1.10), for a periodical input signal Vi, (t) =V, (t+T), we have:
A a
Vour () = A (0 +

(46)

+ lﬁ:[ ( dg RE[Af (a)k )]+ bk Im [Af (a)k )] )COS(a)kt)-i- ( bk Re[Af (a)k )]— ag Im [Af (a)k )] )sin(a)kt) ]

In Eq. (46), the Fourier series of V;,(t) is used.
Using operational amplifiers, we can engineer the different transfer functions. The gain A(a)) of the
ideal open-loop operational amplifier is infinite. With the voltage-shunt feedback, the gain Af (w) is defined

by the certain impedance ratios, as shown in Egs. (47) and (48).




Inverting operational amplifier

with the voltage-shunt feedback

— .
B
Vin Z;
— .

R —

. Vot (@) Z .
A —out\™ _ _ 22 (Inverting OpAm
f (w) Vo (@) Zl( g OpAmp)

Here, Z; and Z, are any impedances.

Non-inverting operational amplifier
with the voltage-shunt feedback

A (w) = Vou (@) _q, 22 (Non-inverting OpAmp)
Vin() Z3

Here, Z; and Z, are any impedances.

(47)

(48)

Some simplest examples:

a) Inverting integrator, where Z; =R (resistor) and Z, = —CL (capacitor).
[0




A?(a)):—é:; is the gain (transfer function) of this circuit. Since lim A?(a))zO, there is no
Zl RCw W—>0

growing or constant part in this gain. The function A; (a)):é has only one pole @ =0, and the
w
corresponding residue is % Using Eq. (4.53), we obtain:

AT (O =ires[ A (n)lexp(iont) =~ (49)

Using Eq. (44), we obtain:

t t
Vour (6)= [ AT (t-9WVin (&) =~ [ Vin(6)c (50)

—0o0

b) Inverting differentiator, where Z; = —CL (capacitor) and Z, =R (resistor).
w

A? (w) :—i—zz—iRCa) is the gain (transfer function) of this circuit. The function A7 (w)=—-iRCw does
1

not have any poles, but it is a first order polynomial with A =—iRC (see (61)). Using Eqg. (4.53), we obtain:

AT (t) = —iA —2 dg(t) - cdift) (51)

Using EQs. (44) and (4.37), we obtain:

d5(t S)y 52)

Vin(s)ds=—RC dvl_rjt(t)

Vout (t) = j A (t—8)Vjq (5)ds = —RC j

—00

c) Non-inverting integrator, where Z; =R (resistor) and Z, :—CL (capacitor).
a
A VA i . . o oA .
A (o) —1422-1- ' isthe gain (transfer function) of this circuit. Since lim A} (w) =1, there is a
Zl RCw W—>0

constant part Ay =1 in this gain. The function A}“ (a)):l—é has only one pole @; =0, and the
w

corresponding residue is — % Using Eq. (4.53), we obtain:

1
Using Eq. (44), we obtain:
t t
Vout®) = [ A (t=sVin(s)ds= | (5& -s)+ Rlc jvm (8)ds =Vin (O + = < J Vin (s)ds (54)

—00 —00




d) Non-inverting differentiator, where Z; = —CL (capacitor) and Z, =R (resistor).
w

A}’ (w) :1+§—2:1+iRCa) is the gain (transfer function) of this circuit. The function A} (w)=1+iRCw
1

does not have any poles, but it is a first order polynomial with Ay =1 and A; =iRC . Using Eq. (4.53), we

obtain:
da(t do(t
Ai 0= g5 -im 20 = 50+ e L0 (55)
Using Egs. (44) and (4.37), we obtain:
t t

Vour® = [AF(t=s)Vin(s)ds= | (6(t—s)+Rc 40 “‘S)jvin(s)ds=vm(t)+RcW (56)

. _ < Z, _ 17 .

A more complicated example: calculate At (a)):—z— and Ag (t>0):2— IAf (w)exp(iot)dw,
1 T s

for the circuit shown in the Figure below (from a review paper on analog computations). Then, express

Vout (t) through the convolution of A (t >0) and Vj,(t).

R Ce
Cy AYAVAYS
Ay
Input N \’—I
"\\.'{l"‘p"ﬁ-.-"
Rz
RolRi—
21 Cla) Rz(R]_Cla)— |)
Zl = —~ = - (57)
R, + R, _ 1 (Re+R)Co-i
Cla)
i RiCoo-i .
Zo=R¢ — = (Rs — feedback resistor) (58)
C2w C2(0
A(o)=_22 (RfCow—i)((Ry +Rp)Croo—i)
f Zl R2C20)(Rlcla) - I)

(59)

Ri(RRy) Ry (R (R, + Rp)Cp — Rt RyC))

RR i
1~1




Rf (R +R i
M} (@ — ). Then, & =0 and a)zzﬁ
1“1

In Eq. (59), we have extracted the constant part [— AR
1R2

A i
and  res[A =—— and
[Ato ()] RoCo

Ry +iz(Ry (Ry + R2)Cy — R¢ RoC»)

2 i ’
RfR,C,Crz| z———
1memm2 ( R]_Clj

are the poles of Afg(z)=

N i(RiC1 —R¢Cp) : A , . .
res[Asq(mo)] = are the residues of Asg(z) in the poles o, and w,, respectively. Using

RFC1Cy

Egs. (59) and (4.53), we obtain:

R: (R +R RiCi—R¢C
AT (t>0)= - f (R 2)5(0_ 1 R 12 f Z)exp[— t J (60)

RiR, RoC) R{C,C, RiCy
Putting Eq. (60) into Eq. (44), we obtain:
t t

_ R¢ (Rp+R2) 1

Vout () = [ AT (t—s)Vin (s)ds = RR, O [Vin(s)ds -

RC,; —R{C,) t _
(R 12 1C2) jexp[—(t )\ (5)ds
R]_C]_CZ 1“1




