
Lecture 5 

I. Operational calculus using the Fourier transformation 

 In Eqs. (2.1)(2.6), we have developed the harmonic analysis for the calculation of the frequency 

domain transfer function if the input parameter (scalar or vector) is harmonic, i.e. it is proportional to 

)exp( ti . However, the harmonic analysis becomes too intricate if the input parameters is proportional to 

several )exp( ti n  with the different n . For example, in the circuit shown in Fig. 1 (see also Appendix 2 

in Lecture 2), we have two harmonic generators with two different frequencies. 

 

Fig. 1 Two inductively connected contours with two harmonic generators. 

 

For this circuit, we obtain: 
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where )exp()( 11 tiAtV   and )exp()( 22 tiBtV  . To solve this system of differential equations by 

means of the harmonic analysis, we have to represent the currents as 

)exp()exp()( 2121111 tiCtiCtI    and )exp()exp()( 2221212 tiCtiCtI   , where nmC  are 

unknown complex amplitudes (four in total). Instead of this, we could try to apply the Fourier 

transformation to the left and right parts of the system (1) to obtain the algebraic system for the Fourier 

images. This Fourier transformation must be understood as a generalised one, and we will use Eqs. 

(4.25)(4.28) for this purpose: 
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The properties (3.4) and (3.5) remain true for this generalised Fourier transformation. For example, Eq. 

(3.4): 
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And, for the generalised Fourier transformation of 
n

n

dx

xfd )(
, we obtain: )(ˆlim)(
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. Applying the 

Fourier transformation (generalised) to Eq. (1), we obtain the system of algebraic equation for the Fourier 

images ( p ): 
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This system can be written and solved in the matrix form: 
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(We do not calculate )(ˆ F  here) 



Note that the matrix (4) can be obtained by means of the harmonic analysis with )exp( ti ! 

Therefore, the harmonic analysis can be used to derive the frequency domain transfer function (scalar 

or vector). To find the currents in the time domain, we have to apply the inverse Fourier transformation 

(generalised) to Eq. (6) and use Eq. (3.7): 
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The first “spectral” form of Eq. (7) 
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is more convenient when )(2,1 tV  are some periodical functions. In this case, we can use Eqs. 

(4.42)(45) and Eq. (4.49). In our Eq. (1), )exp()( 11 tiAtV   and )exp()( 22 tiBtV  , and according to 

Eq. (4.42), we obtain: 
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Putting Eq. (8) into Eq. (7), we obtain: 
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 The concrete example considered above helps us to formulate the operational calculus in its most 

general matrix form for any vector input )(tinV


 and output )(toutV


 parameters (compare with Eqs. (2.2
*
), 

(2.5
*
), and (2.6

*
) in Lecture 2): 
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PF   is the matrix transfer function in the frequency domain   (11) 
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where 

  tP̂  is a square matrix, each element of which is a polynomial of some order 
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calculated using Eqs. (4.53)(4.55) 

 

The following table will be useful: 

Fourier transformation Harmonic analysis Impedance analysis 
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II. Transition processes 

 Let us demonstrate application of the operational calculus for the charge/discharge processes in a RC 

circuit (see (2.10)). The main steps (see above):  
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 1)(ˆ   iRCiP   characteristic polynomial in the frequency domain ( i !) 
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In Eq. (15), we have used the following general formula for the derivative from the integral which depends 

on a parameter t : 
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And, finally: 
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 Let us calculate the response on a single positive square pulse localised within the time interval 

],[ 21 tt . The pulse amplitude is pV  and the offset is zero. 
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Calculating these integrals, we obtain: 
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 For a periodical input parameter )()( TtVtV inin  , where ],[ 00 Tttt  , 0t  is the reference 

time, and T  is the period, the following equation can be derived:  
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where  






1

)0(
~

n
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nTtFtF  will be a combination of exponential functions (see an example 

below), the integrals in Eq. 23 can be calculated analytically for different waveforms like square pulses, 

saw-tooth waveform, and so on. Therefore, the final result will be obtained in a compact formula form. This 

approach can be considered as an alternative to Eq. (1.10), where the output is represented in the 

form of Fourier series: 
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To prove Eq. (23), we will start with   dssVstF
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In turn, the periodical function  )()( 0tVsV inin   can be represented for Ttt  0  as the sum of the 
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Owing to the periodicity of )(tVin , we obtain: 
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where we designate the integration variable q  as s . If we continue this process, we obtain for k-th pulse: 
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The final response is      )()()()(
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 An example how to use Eq. 23 is considered below. For a periodical )(tVin  and 











RC

t

RC
tF exp

1
)0( , we obtain: 

  offset

t

offset VdsstFV 


 

   dsVsVstFdsVsV
RC

st

RC
VTtttV

Tt

t

offsetin

t

t

offsetinoffsetC 









 


0

00

)()(
~

)(
)(

exp
1

)( 00  



where  























































 
 








RC

T

RC

T

RC

t

RCRC

nT

RC

t

RCRC

nTt

RC
tF

nn exp1

exp

exp
1

expexp
1)(

exp
1

)0(
~

11

 

Here, we used the sum of a geometric series. Finally, we obtain: 
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Using Eq. (24) for the RC network shown in Fig. 2, we can calculate its steady-state response for the 

periodical square pulse excitation.  

 

Fig. 2 RC network.  
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To calculate the integrals in Eq. (25), we have to divide the whole period into two intervals ]2/,0[ T  and 
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Calculating the integrals in Eqs. (26) and (27), we obtain: 
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The numerical calculations using Eqs. (28) and (29) are demonstrated in Fig. 3.  
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Fig. 3 Pulse response of the RC network shown in Fig. 2, where E = 2. 

 

 For the symmetrical triangle waveform shown in Fig. 4, there are two different methods (at least) to 

choose 0t  and offsetV  in Eq. (23): 

       






 



dsVsVstFdsVsVstFdsstFVTtTVa offsetin

T

T

t

T

offsetin

t

offsetout )(
~

)()4/34/()(

4/3

4/4/

   






 



dssVstFdssVstFTtTVb in

T

T

t

T

inout )(
~

)()2/2/()(

2/

2/2/

     (30) 

0.0 0.2 0.4 0.6 0.8 1.0

-4

-3

-2

-1

0

1

2

3

4   Initial pulse excitation

  V
C

(t)

T = 1 ms

R = 2.5 K

C = 0.1 F

V
C
 (

t)

t, ms

0.0 0.2 0.4 0.6 0.8 1.0

-3

-2

-1

0

1

2

3   Initial pulse excitation

  V
C

(t)

T = 1 ms

R = 5 K

C = 0.1 F

V
C
 (

t)

t, ms



 

 

 

Fig. 4 Symmetrical triangle waveforms prepared for the use in Eq. (23). 

 

III. The simplest switching voltage regulator 

 Transition processes in the RC (or RCL) circuits find a very important application in switching 

regulators. In this section, we will consider the simplest one, shown in Fig. 5. In this switching regulator, a 

DC input voltage E  is modulated by means of the electronic switch which is driven by a pulse train with the 

width wT  and the pause pT . The output signal is a stable waveform )(tVC  measured across the electrolytic 

capacitor C  and the load LR . In Fig. 5, the input resistance inR  includes the internal resistance of DC 

source and the ON resistance of diode. Usually, Lin RR  . In this switching regulator, we have two linear 

networks for two diode’s conditions “”ON” and “OFF”, respectively. When the diode is ON, we have the 

fast charge network, shown in Fig. 6(a). And, when the diode if OFF, we have the slow discharge network, 

shown in Fig. 6(b). 
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Fig. 5 Switching voltage regulator driven by a square pulse train.  

 

 

 

Fig. 6 Charge (a) and discharge (b) networks.  
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 The charge and discharge networks are described by the following equations, which can be obtained 

from Eq. (17): 
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where )0(0 CVV   is the initial voltage across the capacitor (or load), 
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characteristic time, LL RC  is the discharge characteristic time, and E  is the pulse amplitude (positive). 

 We can calculate the stable waveform amplitudes 1CV  and 2CV , shown in the Fig. 7, using the 

periodicity condition: 
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Solving this system of linear equations, we obtain: 
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Fig. 7 Stable output waveform measured across the capacitor. 

 

Now we are able to reproduce the stable waveform )(tVC   a periodical piecewise continuous function: 
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where 1CV  and 2CV  are the amplitudes from Eqs. (34) and (35). The whole periodical function )(tVC  within 

the period wp TTT   can be written in the following equivalent forms: 
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IV. Ideal operational amplifier as a linear network 

 An operational amplifier (“op amp”) is a differential input, single ended output amplifier, as shown 

symbolically in Fig. 8. This device is an amplifier intended for use with external feedback elements, where 

these elements determine the resultant function, or operation. This gives rise to the name “operational 

amplifier”. At this point, note that there is no need for concern with any actual technology to implement the 

amplifier. Attention is focused more on the behavioral nature of this building block device. 

 

Fig. 8 The ideal op amp and its attributes.  

 

 We will consider an op amp as a linear network between its differential input signals and the 

output. The transfer function of this network has the special name “gain”. An ideal op amp has infinite gain 

for differential input signals. In practice, real devices will have quite high gain (also called open-loop gain) 

but this gain would not necessary be precisely known. In terms of specifications, gain is measured in terms 

of 
in

out

V

V
 and it is dimensionless. Here, inV  is the differential input voltage and outV  is the output voltage. 

Since in practice the gain depends on the frequency, it must be understood as the ratio 
)(ˆ

)(ˆ
)(ˆ




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in

out

V

V
A  , 

where )(ˆ outV  and )(ˆ inV  are the complex amplitude for the corresponding harmonic signals. Also, an 

ideal op amp has zero gain for signals common to both inputs, that is, common mode signals. The ideal op 

amp also has zero offset voltage, and draws zero bias current at both inputs. In practice, another important 

attribute is the concept of low source impedance at the output.  

 The basic op amp hookup of Fig. 9 applies a signal to the “+” input terminal, and a network 

delivers a fraction of the output voltage to the “” input terminal. This constitutes feedback, with the op amp 

operating in closed loop mode. The feedback network can be resistive or reactive, linear or non-linear, or 

any combination of these. For a linear feedback network, we will introduce the gain )(ˆ  . In general, the 

op amp gain depends not only on the frequency, but also on the amplitude of signals applied to the “” input 

terminals. This effect is non-linear, and hence it will result in some frequency distortions. When a sinusoidal 



wave suffers non-linear distortions in an amplifier, the amplifier is in effect adding harmonics to the original 

waveform. The negative feedback will significantly suppress these non-linear distortions. 

 

Fig. 9 A generalised op amp circuit with feedback applied.  

 

The concept of feedback is both an essential and salient point concerning op amp use. With feedback, the net 

closed-loop gain characteristics become primarily dependent upon a set of external components (usually 

passive). Thus behavior is less dependent upon the relatively unstable amplifier open-loop characteristics. 

Note that in Fig. 9, the input signal is applied between the op amp “+” input and a common or reference 

point, as denoted by the ground symbol. It is important to note that this reference point is also common to 

the output and feedback network. By definition, the op amp stage’s output signal appears between the output 

terminal/feedback network input, and this common ground. The emphasize how the input/output signals are 

referenced to the power supply, dual supply connections are shown dotted, with the “” power supply 

midpoint common to the input/output signal ground. But do note, while all op amp application circuits may 

not show full details of the power supply connections, every real circuit will always use power supplies.  

 The negative feedback reduces non-linear distortions by the same factor as it reduces gain (prove 

this equation!): 
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A
A f


 ,          (42) 

where )(ˆ A  is the open-loop gain, )(ˆ fA  is the gain with a feedback, and 1|)(ˆ)(ˆ1|   A  is the 

condition of “negative feedback”. If 1|)(ˆ)(ˆ1|   A , the feedback is termed “positive”, or “regenerative”. 

For a positive feedback, |)(ˆ| fA  will be greater than |)(ˆ| A . Because of the reduced stability of an 



amplifier with positive feedback, it is seldom used.  For the amplifier stability, all the poles of )(ˆ fA  must 

be located in the complex upper half plane. Although negative feedback appears to be the panacea for all 

amplifier ailments it is important to note that it is only effective as long as the open-loop gain )(ˆ A  remains 

much greater than the close-loop gain )(ˆ fA . In this case, we obtain from Eq. (42): 
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
 fA            (43) 

If the negative feedback is given too strong, the rise time (time for waveform to rise from 0.1 to 0.9 of its 

steady-state value) is greatly decreased, but this improvement is obtained at the expense of a ringing 

(oscillatory) response that is unacceptable for many applications.  

 For a perfectly balanced op amplifier, the output signal )(tVout  can be calculated as:  
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and )(tVin  is the input signal between an input terminal (“+” or “”) and the reference point (ground). 

According to Eq. (1.10), for a periodical input signal )()( TtVtV inin  , we have: 
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In Eq. (46), the Fourier series of )(tVin  is used. 

 Using operational amplifiers, we can engineer the different transfer functions. The gain )(ˆ A  of the 

ideal open-loop operational amplifier is infinite. With the voltage-shunt feedback, the gain )(ˆ fA  is defined 

by the certain impedance ratios, as shown in Eqs. (47) and (48). 
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(Inverting OpAmp)       (47) 

Here, 1Z  and 2Z  are any impedances. 
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(Non-inverting OpAmp)      (48) 

Here, 1Z  and 2Z  are any impedances. 

 

Some simplest examples: 

a) Inverting integrator, where RZ 1  (resistor) and 
C

i
Z 2  (capacitor). 




Z1

Z2

Vin

Vout

Inverting operational amplifier

with the voltage-shunt feedback




Z1

Z2

Vin

Vout

Non-inverting operational amplifier

with the voltage-shunt feedback
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Using Eq. (44), we obtain: 
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b) Inverting differentiator, where 
C

i
Z 1  (capacitor) and RZ 2  (resistor). 
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2)(ˆ  is the gain (transfer function) of this circuit. The function  iRCA f  )(ˆ  does 

not have any poles, but it is a first order polynomial with iRCA 1  (see (61)). Using Eq. (4.53), we obtain: 
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Using Eqs. (44) and (4.37), we obtain: 
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c) Non-inverting integrator, where RZ 1  (resistor) and 
C

i
Z 2  (capacitor). 
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Using Eq. (44), we obtain: 
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d) Non-inverting differentiator, where 
C

i
Z 1  (capacitor) and RZ 2  (resistor). 
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2  is the gain (transfer function) of this circuit. The function  iRCA f  1)(ˆ  

does not have any poles, but it is a first order polynomial with 10 A  and iRCA 1 . Using Eq. (4.53), we 

obtain: 
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Using Eqs. (44) and (4.37), we obtain: 
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 A more complicated example: calculate 
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for the circuit shown in the Figure below (from a review paper on analog computations). Then, express 

)(tVout  through the convolution of )0(  tA f  and )(tVin . 
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In Eq. (59), we have extracted the constant part 
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Putting Eq. (60) into Eq. (44), we obtain: 
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