
 1

Introduction to LabView, Version 7

Section 1: Creating a VI

There are two main parts of a VI, the front panel & the block diagram: user interface &

the source code.

From the front panel, you can access any object thorough the control palette, which

allows you to access custom controls & indicators that you have created.

When an object is selected from the Controls palette and placed on the front panel, a

terminal is placed on the block diagram. The terminal is the representation of the front

panel object in source code.

An Example:

1- Select a Thermometer indicator from Controls/Numerical Indicators (Num Inds),

and place it on the front panel.

2- Double click on its label and type “Temp” inside the label text box and click on the

“Enter” or anywhere outside the box.

3- Go to the block diagram. From the Functions/All Functions choose “Select a VI”

icon. It opens a window; go to

C:\Program Files\National Insturments\LabView7.0\vi.lib directory and choose

tutorial.llb, then inside the tutorial library window choose the “Demo Voltage

Read.vi” and place it on the block diagram. For this subVI, we need a channel ID (a

constant numeric) and a device number.

For the channel ID first create a constant by numeric and show that it doesn’t work, then

use the wiring tool and click on the right button and choose create constant. It needs

string.

4- Use the Functions/Arithmetic & Comparison/Numeric to choose a multiplier and

also a constant. Type 100.0 in the constant box. Then use the wiring tool to connect

the constant and the output of the voltage reader. Connect the output of the multiplier

to the indicator, which you labeled as Temp before. This gives the temperature in oF.

5- Run the VI by clicking the on the RUN button in front panel. You may watch the

flow of execution by clicking on the light button in block diagram and then running

the VI.

 2

6- You may write a description for your VI by clicking on “Tools” from the menu bar

and choose “Vi Revision History” and then type the description of the VI in the

“Comment” dialog box.

7- Save your VI by clicking on the File from the menu bar and then click on save as.

Choose a directory with your name and then click on “create new library” to create a

library in your folder. Name it as “my library” and then in the save dialog, name your

VI as “my Thermomether.vi”.

Section 2: Creating a SubVI

A subVI is analogous to a subroutine in any other programming language. You can call a

subVI inside another subVI or a VI. Now, we use the VI that you created in previous

section and make it as a subVI. To use a VI as a subVI, you must create an icon to

represent it on the block diagram of another VI and a connector pane to which you can

connect inputs and outputs. In order to do that:

1. Open the “my thermometer” VI by clicking on File/Open from menu bar.

2. Click the right button on the icon of the VI on the top right corner of the front panel

and choose “edit icon”. The edit dialog opens and then erase the drawing and draw

your own design or write the name of your subVI, then click “ok” to close it.

3. In front panel, again click the right button on the icon and this time choose “show

connector” option. Labview selects a suitable terminal pattern according to the

number of controls and indicators on the front panel. This example has only one

indicator and therefore, there is one terminal.

4. Assign the terminal to the thermometer indicator by clicking on the terminal first (the

terminal turns black), then click on the thermometer indicator (a moving dashed line

frames the indicator). Now, click anywhere outside the indicator and the dashed line

disappears. If the terminal remains white, it means that you haven’t made the

connection correctly. Repeat this step if necessary.

5. Save and then close the VI.

 3

Using a VI as SubVI

1. Open a new front panel, choose the thermometer from the Controls/Numerical

Indicators (Num Inds), and label it “Temp in deg C”. Change the range of it to be

between 20 and 40.

2. In the block diagram window, click on Functions/All Functions/Select a VI and

then find and select the “my thermometer.vi”, the VI that you created in previous

section. The icon of your VI appears on your block diagram.

3. Use the right button of the mouse to click on the block diagram window and choose

subtraction, multiplication and division tools from Function/Numeric. Also create 3

constants: 32, 9 and 5. Use the formula of C=(F-32)*5/9, to convert a degree in F to a

degree in C. Use the wiring tool to properly connect these controls and constants to

the indicator “Temp in deg C”.

4. Run the VI a few times. In block diagram window, click on the bulb and then run the

VI and see the flow of the process.

5. Save this VI in the same folder and library as before.

Section 3: Loops, Charts

Objective: Using a while loop to display data in real time

1. Open a new front panel.

2. Place a waveform chart Controls/Graph Inds in the front panel. Label the chart as

the Random Signal. Change the vertical axis of the chart from 0 to 1.

3. Place a knob (Controls/Num Ctrls/knob) in the front panel. Label the knob as Loop

Delay (sec). With this knob you can control the timing of the while loop. Pop up on

the knob and select (deselect) Visible Items/Digital Display to show (hide) the

digital display that is hidden by default.

4. Using the labeling tool, change the scale around the knob to show between 0 and 2.

5. Open the block diagram.

6. Place the While loop by selecting it from Functions/Exec Ctrl/While Loop. Drag

the While loop to encompasses the terminals. A while loop has a conditional terminal

and an iteration terminal, which always starts counting the loops at zero. The while

 4

loop keeps executing until the conditional terminal terminates the execution. In

LabView version 7, when you select a while loop, by default a stop button appears on

the front panel, which is the condition for execution of the loop, and it is also wired to

the conditional terminal of the loop. In this example, wire the “stop” terminal of the

loop to the conditional terminal of the while loop (the red stop sign).

7. Select the Random Number function from the Functions/Arithmetic &

Comparison/Numeric and wire it to the chart in the block diagram. Leave the loop

delay (the knob) terminal unwired for now. You can use the moving tool to move the

blocks to your desired locations inside the loop.

8. Run the VI. Click on the stop button to stop the loop. To run again, first pop up on the

chart and choose Data Operations/Clear Chart and then run again.

9. By default, the Stop terminal of while loop is a “Control” button, which means it does

accept input from the front panel. In order to understand the difference between a

“Control” and an “Indicator” terminal, on the front panel, pop up the window of the

“stop” button and select “change to indicator” and see what happens. Your VI shows

a broken arrow for the run and gives you error because the stop terminal has become

an indicator that cannot function any more. Change it back to “Control”.

10. Now in block diagram select the “stop” terminal of the while loop and remove it.

Then in front panel, place a vertical switch (Rocker) Controls/Buttons & Switches

in the front panel. Then in block diagram wire this switch to the conditional terminal

of the while loop.

11. Use the labeling tool to create the free label for On and Off. Use the color tool (from

the Window menu bar choose “Show Tools Palette” and then choose coloring tool), to

make the free label border transparent.

12. Repeat step 8.

Mechanical Action of Boolean Switches

You might have noticed that each time you run the VI, you first must turn on the vertical

switch and then click on the run button, in the toolbar. You can modify the mechanical

action of Boolean controls. Click the right button of the mouse when pointing to the

Boolean switch and observe the six available mechanical actions:

 5

• Switch When Pressed action changes the control value each time you click on the

control with the Operating tool. The action is similar to that of a ceiling light switch

and is not affected by how often the VI reads the control.

• Switch When Released action changes the control value only after you release the

mouse button, during a mouse click, within the graphical boundary of the control. The

action is not affected by how often the VI reads the control. This action is similar to

what happens when you click on the check mark in a dialog box; it becomes

highlighted but doesn’t change until you release the mouse button.

• Switch Until Released action changes the control value when you click on the

control. It retains the new value until you release the mouse button, at which time the

control reverts to its original value. The action is similar to that of a doorbell, and is

not affected by how often the VI reads the control.

• Latch When Pressed action changes the control value when you click on the control.

It retains the new value until the VI reads it once, at which point the control reverts to

its default value. (This action happens whether or not you continue to press the mouse

button.) This action is similar to that of a circuit breaker and is useful for stopping

While Loops or having the VI do something only once each time you se the control.

• Latch When Released action changes the control value only after you release the

mouse button. When your VI reads the value once, the control reverts to the old

value. This action guarantees at least one new value. As with Switch When

Released, this action is similar to the behavior of buttons in a dialog box; clicking on

this action highlights the button, and releasing the mouse button latches a reading.

• Latch Until Released action changes the control value when you click on the control.

It retains the value until your VI reads the value once or until you release the mouse

button, depending on which one occurs last.

Try these mechanical actions with the vertical Boolean switch in your VI and see their

differences.

 6

Adding Timing

When you ran the VI, the While Loop executed as quickly as possible. However, you

may want to take data at certain intervals. For this purpose you can use LabVIEW’s

timing functions. Modify your VI as the following:

1. In the block diagram, insert Wait Until Next ms Multiple function from

Functions/All Functions/Time & Dialog. In windows 95/NT the resolution of this

function is 1 ms.

2. Insert a Multiply and a Constant from Functions/Arithmetic &

Comparison/Numeric. Type 1000 in the constant terminal. Wire the Loop Delay

terminal and the constant to the Multiply function and their output to the Wait Until

Next ms Multiple function.

3. Rotate the knob to get different values for the number of seconds of delay and run the

VI a few times.

4. Save and close your VI. Name your VI as “Plot Random Signal.vi”.

Exercise

Modify your “Plot Random Signal” VI such that it also plots a 4 point running average of

the random signal in the same chart. For doing this exercise you need to use two new

elements: Bundle and shift register.

 7

Section 4: Arrays, Clusters, and Graphs

Objective: Learning about arrays, how to generate arrays on loop boundaries,

what's a cluster and how to use graphs to display data.

The difference between a graph and a chart is that a graph plots data as a block whereas

a chart plots data point by point or array by array. You may see examples of graph VIs at

examples\general\graphs.

1. On a new front panel, place an array shell from All Controls/Controls/Array &

cluster in the front panel. Label the array constant as Waveform Array.

2. Place a Numeric Digital Indicator from Controls/Num Inds inside the element

display of the array constant. This indicator displays the array contents.

3. Place a waveform graph from Controls/Graph Indc in the front panel. Label the

graph as Waveform Graph. A Graph indicator is a 2D display of one or more data

arrays. By default graphs auto scale their input. You can disable or enable autoscaling

X or Y by popping up on the graph and select or deselect Y Scale/Autoscale Y.

4. Go to block diagram and place a For loop (from Functions/All

Functions/Structures/For) outside the items on the block diagram. Click on N and

create a constant 100 (the For loop indexes from 0 to 99). Use necessary tools to

multiply the index i by 2π, then divide by 10, and then wire the output to a Sine

function (from Numeric/Trigonometric/Sine). Wire the output of Sine function to

the Waveform Graph. Note that as the wire leaves the For loop, it becomes thicker to

indicate the array. Also wire the sine wave to the Waveform Array.

5. Run the vi and notice that it plots a 100-point sine wave. Watch the values on the

Waveform Array indicator. Save your vi under the name "sig_gen.vi".

6. Now, let's assume we want to scale the X axis from 0 to 1 instead of the number of

data samples. For doing that, place a Bundle (from Functions/All

Functions/Cluster/Bundle) and resize it to show 3 input elements (by popping up the

right click window and choosing “adding an element”). Bundle function is analogous

to Sturct in C programming. Use wiring tool to create 0 and 1 constants for the initial

value x0 and delta x for the X axis. Remove the wire connecting the output of sine

function to the graph and rewire it to the 3rd element of the Bundle and then wire the

 8

output of Bundle to the Graph. Note the change of color in the Graph icon. Run your

vi and notice that it now scales the X axis from 0 to 1. Change the delta x to 0.05 or

any other number and note the difference.

Multiple Graphs

8- Go to the block diagram. From the Functions/All Functions choose “Select a VI”

icon. It opens a window; go to C:\Program Files\National

Insturments\LabView7.0\activity and select “Generate Wavform.vi”. Modify your

VI by placing the Waveform Generator and wire the index i to its input. Remove the

connection from the Sine output to the Bundle and place a Build Array (from

Array/Build Array) and resize it to show 2 elements. Connect the output of the

Wave and Sine functions to the elements of Build Array. Wire the output of Build

Array to the 3rd element of the Bundle and Run your VI again.

7. In the front panel, resize the legend box of the Graph to show both legends. Right

click on the legend box and choose different colors for each plot. Use labeling tool to

change the name of each plot in the legend box.

8. Save your VI.

Exercise

Instead of generating a sine wave the way you just did in this section, use the Signal

Generator function (from Functions/All Functions/Analyze/Waveform

Generation/Basic Function Generator) outside the For loop to generate the same sine

wave and still bundle it with the wave generator and plot the data. Use Show Help to

guide you through wiring the terminals of this function.

 9

Section 5: Auto-Indexing on Input Arrays, Cases, Sequences

Attention: You can learn a lot by looking at the many examples of LabView located in

C:\Program Files\National Instrument\LabView\Examples

Objective: Create a sine wave as an input array and use auto-indexing to separate

the positive and negative values of the input and build half-wave and full-wave

rectifiers.

1. Open a new VI and place three arrays with digital indicator inside. Label them as

Input Array, Positive Array and Negative Array. (An input Array should have a

digital control as its element, however since we do not have a data input, we create a

sine wave as input and therefore the input array must have digital indicator as its

elements.)

2. Go to block diagram. Place a For loop (from Structure/For). Wire a constant of 100

to N. Inside the For loop, multiply the i by 2π, then divide by 20 and wire the output

to the sine function. This way the frequency of the resulted signal is 5 Hz. Wire the

output of the sine function to the Input Array indicator outside the For loop. (Note

that the wire becomes thick when leaving the loop to indicate that it is an array.)

In order to rectify the sine wave, you have to separate the negative and positive values

and move them into the two Positive and Negative Arrays. Therefore, you need to check

every element of the input array.

3. Place another For loop and place a Case structure inside the For loop.

4. Place a Greater? from Functions/Arithm-Compare/Comparison/Greator? inside

the For loop but outside the Case. Place a Build Array with two elements inside the

Case in both True and False cases. You can toggle between the cases by popping up

the top of the Case and choose Show Case True or Show Case False.

5. Wire the Input Array to the Greator? function and compare it with zero (click on the

other input pin and choose create constant). Wire the output of the Greator? function

to the ? of the Case.

6. Add two shift registers for previous values of the Input Array signal. The shift

registers should be initialized, otherwise, your program runs correctly only for the

 10

first time. Initialize them by placing the Initialize Array (from All Functions/Array).

Use the right button click and choose create constant for input pins of this function

(Element Data and Dimension size).

7. Wire the Input Array to the second element of the Build Array inside the Case (in

both True and False cases). In Case True connect one of the shift registers of the left

side to the first element of the Build Array and wire the output to the current value of

the same shift register on the right side of the loop and wire it outside to the Positive

Array indicator. In Case False, do the same but with another shift register. In both

cases pop up the first element of the Build Array and choose "Change to Array".

8. By now, you notice that the place that the wire leaves the Case (called the tunnel), is

white and the run button is broken. Every tunnel has to be connected in both cases.

Therefore, in Case True, connect the previous negative values to the current negative

values and vice versa in Case False. By doing so, you notice that the tunnels turn

black.

9. Place a Build Array (with 2 elements) outside the For loop and connect the Positive

and Negative Arrays to the elements of Build Array to create a 2-dimensional data.

Wire this data to the Graph and run the program.

10. Save your VI and call it half rectifier.vi.

11. Change the constant 20 in the first generating sine wave to 10 or 5 and observe the

results. How can you explain the differences?

Exercise

Modify your half-wave rectifier to become a full-wave rectifier. For doing this, you need

only one shift register.

 11

Section 5: Data Acquisition

If you want to write a data acquisition VI, you should read almost the entire Data

Acquisition Tutorial book of LabView and start modifying or building your own VI

around one of the written examples the LabView. However, in this note, we briefly point

out the main components of a data acquisition VI for the most common signal recordings.

• AI Config VI- This VI (Function/Data Acquisition/Analog Input/AI Config) is the

primary component of a data acquisition VI, which configures the channels, selectes

the input limits and generates a taskID. This VI is needed to be called only once to

configure the channels and therefore it should be placed outside the loop for data

acquisition.

• AI Start- This VI (Function/Data Acquisition/Analog Input/AI Start) starts a

buffered analog input operation. It sets the scan rate (sampling rate) and trigger

condition and then starts an acquisition. This VI can also be set for a continuous

acquisition. This VI should also be placed outside the loop for data acquisition.

• AI Read- This VI (Function/Data Acquisition/Analog Input/AI Read) reads data

from a buffered data acquisition. It should be placed inside the loop of data

acquisition.

• AI Clear- This VI (Function/Data Acquisition/Analog Input/AI Clear) clears the

analog input task associated with the TaskID.

Buffered versus Continuous Acquisition

Designing a buffered data acquisition VI is simpler than continuous one because you just

have to specify one buffer with a size of at least equal to the number of channels

multiplied by the scan rate and the duration that you need the data in seconds. However,

obviously it is limited because of the limitation of the buffer size depending on the

computer in use. It is good only for short data recording. If you need longer recording

without being worried about the buffer size, you have to design your data acquisition VI

in continuous mode. In this case, you have to use a circular buffer.

 12

A circular buffer is filled with data, just as a simple buffer; however, when it gets to the

end of the buffer, it returns to the beginning and fills up the same buffer again. This

means data can read continuously into computer memory, but only a defined amount of

memory can be used. Your VI must retrieve data in blocks, from one location in the

buffer, while the data enters the circular buffer at a different location, so that unread data

is not overwritten by newer data.

