
The Junebug PIC Users Group Newsletter Issue #2 June 2008

 Download JPUG newsletters from www.blueroomelectronics.com page 1 of 8

THE JPUG
In this Issue

Cover: Junebug Simulator
by Eric Gibbs

Keypad Using One A/D Input
by Jason Lopez

Controlling a Servo Motor
by Mike Webb

Standalone Power for Junebug
CSV 4 Channel A/D Recorder
by William Richardson

Name & VDD calibration
by William Richardson

Hello World and the UART Tool
by William Richardson

Tips & Tricks for the 18F
#1 W is an SFR
#2 BRA vs GOTO
#3 Even Numbered Branching
#4 2 Cycle delay
#5 200,000 Cycle delay
#6 Shifting bits with multiply
#7 LAT vs PORT
#8 TABLRD vs RETLW

Published by

< blueroomelectronics >

All articles are generously
provided by PIC enthusiasts like
you, have you got an idea for a
project or have an article to
contribute to JPUG?
Drop us a line at
jpugnews@gmail.com

JPUG is written and published
using OpenOffice 2.4

Eric Gibbs amazing Junebug
module for use with the

OshonSoft PIC18F simulator

You can find blueroomelectronics and many other electronics enthusiasts at www.electro-tech-online.com

http://www.blueroomelectronics.com/
http://www.electro-tech-online.com/
mailto:jpugnews@gmail.com

The Junebug PIC Users Group Newsletter Issue #2 June 2008

Cover Story: Junebug Simulator
(OshonSoft PIC18F Simulator) by Eric Gibbs

When debugging firmware I
traditionally start work by creating an
External Module for the OshonSoft
PIC18 Simulator IDE.

Junebug Sim 1.2 can be downloaded from
http://www.blueroomelectronics.com/download.html

The zipped file contains the external module
program, which is named JunebugExt1.exe. and a
number of programs written in OshonSoft Basic. The
Basic programs are there to demonstrate the different
features of the module.

Visual Basic 5 Runtime files are required, these files
can be downloaded and installed, free from the web.

The OshonSoft PIC18Simulator IDE must be
installed, for a trial version of the IDE, visit
www.oshonsoft.com

Create and name a folder on the hard drive named
Junebug1

With the above files installed in the Junebug1 folder,
double clicking the JunebugExt1.exe will run the
OshonSoft PIC18 IDE and the External module.

It would be a good idea to create a desktop shortcut
to the JunebugExt1.exe, for future use.
Module Features.

The layout and the component identification of the
module has been done to closely represent the
physical layout of the actual Junebug Tutor PCB.

In addition to the components represented on the
module there are control buttons and check boxes
used to control the module.

Operation.

When ALL the ‘required files’ have been installed,
double click (run) JunebugExt1.exe

After clicking the exe file the PIC18 IDE and module
will appear on the PC monitor.

From the IDE menu’s select the 18F1320 PIC type,
crystal frequency and the Basic Compiler

Using the IDE File menu, load a Basic demonstration
file from the examples provided, into the Compiler
window.

Compile the file using the Compiler menu, the hex
file is automatically loaded into the IDE.

Select the ‘Rate’ using the IDE menu, the Rate
selected determines the rate at which the simulator
runs. Being a PC based simulator it will not run at
real time PIC speeds.

After compiling the program, select ‘Start’ from the

IDE menu, the program will run and depending on
which example program you have compiled, the
module will display the operation of the program.

On the module menu bar is a ‘Help’ option, on
selecting this option, a help text window is displayed.
The text explains the operation of the module.

To close and exit the module use the ‘Save & Exit’
option on the module menu bar, this will
save various settings of the module. The saved
settings will be recalled next time the module is run.

For convenience, the ‘Help’ text of the module has
been reprinted below:

The Junebug External Module has been designed to
work in conjunction with the OshonSoft PIC18
Simulator IDE.

The 'Connect to Sim' button on the module enables
the PORT pin read/write to the IDE.

The state of the PIC pins can be set High [Red] or
Low (green] by clicking the left mouse button on the
pin label. [eg: A0]

With the PIC Sim IDE started, the 'Connect to Sim'
button enabled and the program running, the IDE will
control the state of the module pins, the colour of the
pin indicates the pin state, high or low.

When multiplexing the LED's 1 thru 6, a PIC input is
White

SW6 on the module can be set by a left mouse click
on the switch bit.

If VR1 or VR2 slider control is selected, by using
SW6, then the VR1 and VR2 analog control voltage
will be sent to the IDE.

To see any change in the voltage at the PIC in the
IDE the running program must configure
PORTA to suit analog input.

The input voltages to the ADC and conversion value
are displayed on the module. SW1 button on the
module shares the B0 pin with the IR1 input.
Use SW6 to select the SW1 or IR1 input to B0.
When the IR1 input is selected the state of the IR1
can be set Low, High or Alternating High/Low

On the Module menu bar is the option to set the A4
[TMR0] and B6 [TMR1] inputs “toggling”, this feature
is useful for checking Interrupts, when working on
external clock inputs.

Normally the SW1 thru SW3 buttons on the module
are momentary, to latch the SW1 thru SW3 switches,
check the “Lat” box, this make the switch latching.

The Charlieplexed LED's, numbered 1 thru 6, expect
the program in the IDE to be written to support
multiplexing. Use the example Basic program
included in the zip.

The LED's will indicate the multiplexed state of the
A0, A6 and A7 pins.

 Download JPUG newsletters from www.blueroomelectronics.com page 2 of 8

http://www.blueroomelectronics.com/
http://www.oshonsoft.com/
http://www.blueroomelectronics.com/download.html

The Junebug PIC Users Group Newsletter Issue #2 June 2008

When multiplexing, the LED's 1 thru 6, a PIC input
pin state is coloured White .

By checking the Show Op Instr box the Program
Counter, the Last Program Instruction will be
displayed in the text box.

While the program is running in the IDE, pressing the
'S/Step' button on the module will set the IDE in the
STEP mode.

NOTE: after the S/Step button has been pressed, the
program will Stop and await further presses of the
modules S/Step button.

Each press will STEP the program onto the next
instruction.

Used in combination with the 'Show Op Instruction',
the user can observe the instructions and the states of
the module.

While the ‘S/Step’ button has the focus, the keyboard
‘Enter’ key can be used to STEP thru the program or
to give a short burst RUN , if the key is held down.

To RUN or RESUME the program at any other rate
than STEP, the IDE 'Rate' menu must be used.

To keep the module on top of other windows check
the 'Stay On Top' box.

Keypad Using One A/D Input
(MPASM & Just BASIC) by Jason Lopez

Here's a method for reading a row of
keys (in this example 12 push-buttons).
The method is Included is a simple
program for your PC that helps choose
resistor values for the actual hardware
(you'll need to connect this keypad
externally via the Junebug's CON3

connector.)

RPu = 1000 ' pullup top half of voltage
divider
ADbits = 4 ' A/D resolution in bits
For Count = 0 to 2^ADbits -2
 Vlow = Count / 2^ADbits
 Vhigh = (1+Count) / 2^ADbits
 Rmin = RPu / (1-Vlow) * Vlow
 Rmax = RPu / (1-Vhigh) * Vhigh
 Rideal = (Rmax - Rmin)/2 + Rmin
 If RPu + Rideal > 10000 then exit For
 Print ADbits;"bit A/D Result ";
 Print Count,"Rmin ";int(Rmin)," Rmax ";
 Print int(Rmax),"Ideal ";int(Rideal)
Next Count
END
Just BASIC program for finding Rx values
Running the program with a pullup resistor of 1K

produced the following table
4bit A/D Result 0 Rmin 0 Rmax 66 Ideal 33
4bit A/D Result 1 Rmin 66 Rmax 142 Ideal 104
4bit A/D Result 2 Rmin 142 Rmax 230 Ideal 186
4bit A/D Result 3 Rmin 230 Rmax 333 Ideal 282
4bit A/D Result 4 Rmin 333 Rmax 454 Ideal 393
4bit A/D Result 5 Rmin 454 Rmax 600 Ideal 527
4bit A/D Result 6 Rmin 600 Rmax 777 Ideal 688
4bit A/D Result 7 Rmin 777 Rmax 1000 Ideal 888
4bit A/D Result 8 Rmin 1000 Rmax 1285 Ideal 1142
4bit A/D Result 9 Rmin 1285 Rmax 1666 Ideal 1476
4bit A/D Result 10 Rmin 1666 Rmax 2200 Ideal 1933
4bit A/D Result 11 Rmin 2200 Rmax 3000 Ideal 2600
4bit A/D Result 12 Rmin 3000 Rmax 4333 Ideal 3666
4bit A/D Result 13 Rmin 4333 Rmax 7000 Ideal 5666
You may have noticed it calculates the results for a
total of 14 keys, depending on the A/D resolution you
choose even more keys (or less) are possible.

I've rounded the resistor values to as close to
commonly available values and 5% resistors are fine.
The reason for the particular resistor choices make it
almost effortless to convert the A/D values into their
respective pushbuttons. The ADbits = 4 means we're
going to truncate throw away the lower 6 bits (it's a
10bit A/D on the 18F1320). The beauty is no lookup
tables are used to convert the A/D result.

 Download JPUG newsletters from www.blueroomelectronics.com page 3 of 8

Keypad Schematic for CON3

http://www.blueroomelectronics.com/

The Junebug PIC Users Group Newsletter Issue #2 June 2008

The program fragment presented below was designed
for use with the MPLAB PICkit2 (Junebug) debugger
and will return the result in the W register.
Remember a value of 0x0F in W would indicate a no
key pressed condition.

list p=18F1320
include <p18F1320.inc>
CONFIG OSC=INTIO2,WDT=OFF,LVP=OFF
org 0x00 ; reset vector

Init movlw 0x62 ; 4MHz OSC
movwf OSCCON
movlw b'00000101' ; A/D on, AN1
movwf ADCON0 ; left justify
movlw b'00110011' ; conversion speed
movwf ADCON2

Main rcall GetKey ; watch WREG and
bra Main ; set breakpoint here

; WREG will return 15 (no key) or 1-12 (key)
GetKey bsf ADCON0,GO ; start A/D

btfsc ADCON0,DONE ; conversion
bra $-2 ; loop till done
swapf ADRESH,w ; swap nibbles
andlw 0x0F ; mask off top 4bits
return ; exit with result in W

END
Since the result is only 4bit it's a simple matter of left
justifying the A/D result, swapping the high/low
nibbles and masking off the upper nibble (4 bits). If
you're using results other than 4 bits you'll need to
shift the results around; check out tip #6 for a pretty
nifty way of shifting bits left or right. Of course if
you're only shifting a single bit then the rotate
instruction is probably your best choice.

Possible PCB layout for the project

Controlling a Hobby Servo Motor
(C18) by Mike Webb

Hobby Servos are a popular and
inexpensive way to connect our electronics
to the outside world. To control a hobby

servo you have to send it pulses. A short pulse makes
it go fully left and a long pulse fully right, anything
in between and the servo goes to the proportional
position.

We can use our Junebug to produce these pulses and
hence control a hobby servo. To produce accurate
pulses with a PIC we need to use one of the hardware
timers. I chose to use timer 1 as this is a 16 bit timer
and when combined with the capture compare
module (CCP) can be reset at a predetermined count.
To accomplish this we setup the CCP module in
special events trigger mode. In this mode the timer is
reset when the timer count is equal to the value in
CCPR1. When these values match two things happen,
timer 1 gets reset to zero and the CCP interrupt flag
(CCP1IF) will get set. We can use this flag to
accurately turn our servo pulse on and off.

Now we have a way to generate the
pulses we need someway to alter
their length. We do this by reading
the value of the preset resistor
VR1. To do this we setup the
analogue to digital converter (ADC)
to convert the voltage from VR1 into
a number that varies between 0 and
1023 (10 bit) and we use this value to alter the length
of the pulses.

#include <p18f1320.h>
#pragma config WDT = OFF, LVP = OFF, OSC = INTIO2
#define ServoPin LATBbits.LATB3
#define ServoTris TRISBbits.TRISB3

void main(void){
int ServoPos;
 OSCCON=0x70; //Osc=8MHz
 ADCON0=0b00000101; //A2D on & select AN1
 ADCON1=0x7d; //A1 = analogue
 ADCON2=0b10110101; //Right justify - Fosc/16
 ServoTris=0; //make servo pin output
 ServoPin=0; //Servo output off
 CCP1CON=0b00001011; //Special event trigger
 T1CON=0b10010001; //Timer 1 on with Presc=2
 ServoPos=1500; //set servo to mid position
 while(1){
 CCPR1=20000-ServoPos; //20mS - Servo Time
 ADCON0bits.GO=1; //start conversion
 while(ADCON0bits.GO); //Wait till complete
 ServoPos=ADRES+1000; //1mS to 2.023mS
 while(!PIR1bits.CCP1IF);//wait for IF
 ServoPin=1; //start pulse
 CCPR1=ServoPos; //Servo time in uS
 PIR1bits.CCP1IF=0; //clear int flag
 while(!PIR1bits.CCP1IF);//wait for CCP IF
 ServoPin=0; //end pulse
 PIR1bits.CCP1IF=0; //clear int flag
 }
}
The Complete Servo program

 Download JPUG newsletters from www.blueroomelectronics.com page 4 of 8

http://www.blueroomelectronics.com/

The Junebug PIC Users Group Newsletter Issue #2 June 2008

You need to connect a servo to con5 and ensure it is
connected the right way around.
Editors note: your USB port may not have enough current to
reliably run a servo motor, see the Standalone Power article
at the end of this article

If you are familiar with MPLAB and the C18
compiler then the above code is all you need. If
you’re a newcomer to all this then, here’s a step-by-
step guide to get you going. Although it seems like a
lot of steps, once you’ve done it a couple of times
it’ll be second nature.

1. Run MPLAB and select the program wizard
from the project menu.

2. Click next to get to stage 1.
3. Select PIC18F1320 from the drop down box

and click next.
4. Select “MPLAB C18 C Compiler

(mcc18.exe)” from the list and click next. If
this isn’t in the list then you need to download
it from Microchip and install it.

5. Create a new project by clicking browse and
navigate to a folder where you want your
project. Type servo as the file name, click
save and then click next.

6. Skip stage 4 by clicking next.
7. Click finish.
8. If you are using the latest version of MPLAB

you will now have a blank page. Select View-
Project from the menu bar.

9. Select Project-Add new file to project.
Navigate to your project folder and type
servo.c as the file name. Note, there is also
add file to project – you don’t want this one.

10.You now have a blank window called servo.c
into which you can copy and paste the above
code.

11.In the projects window (servo.mcw) right
click on the linker script folder and select add
files. Navigate to C:\MCC18\LKR (or
wherever you installed the C18 compiler) and
select file 18f1320i.lkr

12.Connect your Junebug and turn on switches 1,
2, 3 & 8

13.From the debugger menu select tool PICkit 2.
14.Press F10 and you should have a compiled

project.
15.Have fun.

Standalone Power for the Junebug
Thanks to portable MP3 players
it's possible to find inexpensive
5V regulated power
adapters. They're
particularly handy for
running your Junebug
projects without your PC,
plus the added benefit of

typically higher current (1A-2A) then a computer
USB port (100mA – 500mA)
Another option is a powered USB hub, these
inexpensive devices will supply power (500mA to 1A
typical) to the ports even when the host PC is
disconnected and they can also power those high
current projects like servo motors.

CSV 4 Channel A/D Recorder
(Swordfish BASIC) by William Richardson

This 4 channel A/D Recorder will
continuously output data from AN1
(RA1) to AN4(RA4) via the PICkit2
UART Tool at a rate of one channel per
second. It also formats the results for
CSV (Comma Separated Value) which
means the results can be directly loaded

into almost any spreadsheet program such as
OpenOffice Calc or Excel.

Device = 18F1320
Clock = 4
Config OSC = INTIO2, WDT = OFF, LVP = OFF
Include "USART.bas"
Include "convert.bas"
Include "Junebug.bas"
Dim ADSel As Byte

Public Function ADGO(ADCS As Byte) As Word
 ADCON1 = (0 << ADCS) ' select analog input
 ADCON0 = (ADCS << 2) Or $03 ' Channel & GO
 While(ADCON0.1 = 1) ' wait till done
 Wend
 ADGO=(ADRESH<<8)+ADRESL
End Function

SetBaudrate(br9600)
OSCCON = $62 ' 4MHz OSC
ADCON2 = %10100001 ' A/D speed, Right justify
USART.Write("Junebug CSV 10bit 4 Channel
Recorder",13,10)
USART.Write("AN1,AN2,AN3,AN4",13,10)
 While true
 For ADSel = 1 To 4
 USART.Write(DecToStr(ADGO(ADSel)))
 DelayMS(1000)
 LED(ADSel)
 If ADSel < 4 Then ' comma for CSV
 USART.Write(",") ' formatting
 EndIf
 Next

 Download JPUG newsletters from www.blueroomelectronics.com page 5 of 8

CSV data as seen by OpenOffice Calc, of course
Microsoft Excel results would be similar

http://www.blueroomelectronics.com/

The Junebug PIC Users Group Newsletter Issue #2 June 2008

 USART.Write(13,10) ' CR/LF
 Wend
End
The Data Recorder program, if you need the
JUNEBUG.BAS module you can find it in JPUG
issue #1 or download it from the Junebug page at
www.blueroomelectronics.com

Once you've compiled and programmed your
Junebug you'll need to exit the Swordfish IDE and
run the standalone PICkit2 software. You'll also need
to turn OFF DIP switches 1,2&3 and turn ON switch
#4 (TX). LEDs 1 thru 4 should flash sequentially at
one-second intervals. From the PICkit2 software
choose the UART Tool, set the baud rate to 9600 and
press Connect. You should see data coming in right
away. If you want to make a logger you can press the
Junebugs RESET button and this will restart the
recorder and also put the headers fields in if you
decide to capture the data in a CSV spreadsheet
format.

Note: Technically this program is not a standalone
data recorder as it requires your computer to log the
data. Perhaps a standalone EEPROM version would
make for an interesting future project for JPUG...

Tips & Tricks for the 18F
(MPASM) Various Sources on the Net

#1 W is an SFR

W is an SFR, what does that mean? With the new
16bit core of the PIC18Fxxxx you can access the W
(working) register as you would any other file
register (SFR). This opens up some interesting
programming possibilities especially for the byte
frugal programmers out there.

For example; a simple delay routine commonly
would look something like this

 decfsz DELAY,f
bra $-2

Could be written on an 18Fxxxx series PIC like this
decfsz WREG,f
bra $-2

The difference is you don't have to define the
DELAY variable which uses one byte of RAM. This
might seem trivial to many, but to a microcontoller
programmer making every byte count.
This leads us to tip #2

#2 BRA vs GOTO
Another new instruction to the 18F series is the BRA
instruction. BRA (branch unconditionally) takes only
one instruction space vs GOTO which requires two
instruction spaces. The limitation of bra is it can only
jump short distances (-1024 to +1024) but hey a byte
is a byte.

#3 Even Numbered Branching
All 18Fxxxx program memory is 16bits one word
wide (the 16F is 14bits), MPASM allows access to
every byte but all instructions begin on even memory
address. Branching backwards (will jump to the
NOP) by one instruction would look something like
this

NOP
BRA $-2

Where $ is an instruction to MPASM that inserts the
current program location during assembly. The -2
will branch backwards by two bytes (or 1 instruction)
Of course using a label would make it easier but
where's the fun.
JumpHere NOP

BRA JumpHere

#4 2 Cycle Delay using BRA $+2
Using a BRA $+2 is a common method to create a two
cycle delay with only a single instruction. It has the
same result as using two NOP instructions in a row.
You may have seen this routine used with the old
PIC16F when you see GOTO $+1 in a program.

#5 200,000 Cycle Delay
Myke Predko has some terrific books on PIC
programming and his web site http://www.myke.com/
basic.htm has many tips & tricks for the PIC16Fxxxx
One of those tips (#26) is a 200,000 cycle delay
routine. Myke also notes this is handy routine for a
200ms (1/5 sec) delay when the oscillator is 4MHz.
 clrf DlayCount
 clrf DlayCount + 1
 decfsz DlayCount, f

 Download JPUG newsletters from www.blueroomelectronics.com page 6 of 8

You can log your data with the PICkit2 UART Tool, don't
forget to set DIP SW-4 (TX) to ON to see the data

http://www.blueroomelectronics.com/
http://www.myke.com/basic.htm
http://www.myke.com/basic.htm
http://www.blueroomelectronics.com/

The Junebug PIC Users Group Newsletter Issue #2 June 2008

 goto $ - 1
decfsz DlayCount + 1, f
goto $ - 3
Original code as seen on Myke's website

I've modified Myke's routine for the PIC18Fxxxx
clrf WREG
clrf DelayCount
decfsz WREG, f
bra $ - 2

 decfsz DelayCount, f
bra $ - 6
Modified PIC18F version

Running the code through the MPLAB simulator's
stopwatch the 200,000 cycle delay is exactly 197,121
cycles just in case you're wondering.

#6 Shifting Bits with 8x8 Multiply
Something I found over in the Microchip Forums. A
really neat way to shift bits left or right.

Shift the value in W 3 bits to the left:
mullw .1<<3 ; 3 = #bits
movf PRODL,w

Shift the value in W 3 bits to the right:
mullw .256>>3 ; 3 = #bits
movf PRODH,w

#7 LAT vs PORT
One new 18F instructions is LATx (latch) this new
instruction addressed the old RMW (Read Modify
Write) problem when writing a bit to a port that could
be a real nightmare for programmers who were not
looking out for it. The PORTx instruction is still used
for reading an input port but you should use LATx
when writing to an output port.

btfss PORTB,2 ; test bit RB.2
movf PORTA,w ; read byte RA
bsf LATB,2 ; write bit RB.2
movwf LATA ; write byte RA

#8 TABLRD vs RETLW
Anyone familiar with the 16F has probably used
tables and the traditional method is using RETLW
Below I've illustrated a typical example

; W holds the offset into the table
 call Table
 Table addwf PCL
 dt "Hello"

dt is the same as RETLW <data> but there are a
couple of important differences vs the 16F
counterpart.

● The table requires increments of two bytes
● Every value takes two bytes of memory

The first fix is easy just multiply the WREG x 2, the
easiest way to do this in assembly is a simple rotate
left without carry. So the routine would now look like
this.

rlncf WREG
call Table

 Table addwf PCL
dt "Hello"

Does the 18F instruction set off a better solution, yes
the TABLE instruction and the DB command.

movlw Table
 movwf TBLPTRL

TBLRD
Table db "Hello"
The W register is not used but instead the TABLAT
register holds the result. You may have noticed the W
offset is missing, instead you use the TBLPTRx
registers. Since the TBLPTR is not limited to 256
bytes it's a good idea to load the 16 bit address before
using the table. Also as an added bonus it's possible
to have the pointer automatically increment if desired
using the TBLPTR*+ instruction.
 movlw High(Table)
 movwf TBLPTRH
 movlw Low(Table)
 movwf TBLPTRL
 TBLRD*+
Table db "Hello"

 Junebug Naming & VDD Calibration
(MPASM) by William Richardson

The PICkit2 2.50 software has a feature that allows
you to name and calibrate your Junebug, but
Junebug does not have an adjustable VDD so
calibration cannot be performed and any existing
calibration value will be lost. Calibration is only
necessary if you plan on using 3.3V PICs.
The following program is designed to load into the
Junebugs 18F2550 via the PICkit2 bootloader.

Save the following program as Junebug_Cal
; Change only the ID define below
; must be 15 characters or less
#define ID "Junebug Cal"
#define Vcal 0xFA81 ; 4.2V Calibration

list p=18F1320
include <p18F1320.inc>
org 0x2000 ; bootloader vector

Start clrf INTCON ; interrupts OFF
movlw low(Name)
movwf TBLPTRL
movlw high(Name)
movwf TBLPTRH ; point to Name table
movlw 0xF0 ; EEPROM Name address
movwf EEADR
clrf EECON1

 Download JPUG newsletters from www.blueroomelectronics.com page 7 of 8

http://www.blueroomelectronics.com/

The Junebug PIC Users Group Newsletter Issue #2 June 2008

movlw '#' ; EEPROM 0xF0 = '#'
rcall WriteEE

Loop tblrd*+ ; read table and increment
movf EEADR,W
bz WR_Cal
movf TABLAT,W ; W = TABLAT
rcall WriteEE
bra Loop

WR_Cal clrf EEADR ; EEPROM 0x00 = 0101FA81
movlw 0x01 ; first two bytes
rcall WriteEE ; are 0101
movlw 0x01
rcall WriteEE
movlw high(VCal) ; save calibration
rcall WriteEE ; values into EEPROM
movlw low(VCal)
rcall WriteEE
bra $; wait for reset

Name data MyJune
data 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

; Sub WriteEE W = Data, auto increments EEADR
WriteEE bcf PIR2,EEIF ; clear EE flag

movwf EEDATA ; EEDATA = W
bsf EECON1,WREN ; write enable
movlw 0x55
movwf EECON2
movlw 0xAA
movwf EECON2
bsf EECON1,WR ; begin write
nop
btfss PIR2,EEIF ; wait till write

 bra $-2 ; completes
 bcf EECON1,WREN ; write disable

incf EEADR ; next address
return
END

Above junebug_cal.bas / Below Download PICkit2 OS

Press and hold the while plugging your Junebug into

the USB port on your computer. The red busy LED
should flash. Run the PICkit2 software and select
Download PICkit 2 Operating System
then locate and open junebug_cal.hex after it's loaded
it will automatically run and update the 18F2550s
internal EEPROM. The PICkit2 software will reset
the Junebug but you'll need to manually run the
bootloader again by holding down the boot button.

Hello World and the UART tool
(Swordfish BASIC) by William Richardson

Traditionally your first program is often called Hello
World here's a small program that will send “Hello
World” to the UART Tool

Device = 18F1320
Clock = 8 // define the clock speed
for the compiler
Config OSC = INTIO2, WDT = OFF, LVP = OFF
Include "USART.bas"
OSCCON = $72 // select 8MHz internal
oscillator
SetBaudrate(br9600)
While true
 USART.Write("Hello World",13,10)
 DelayMS(1000)
Wend
End

Book of the month

Microprocessors: From Assembly Language to C
Using the PICI8FXX2 by Robet B Reese.

Hardcover: 652 pages
• ISBN-10: 1584503785
• ISBN-13: 978-1584503781

 Download JPUG newsletters from www.blueroomelectronics.com page 8 of 8

http://www.blueroomelectronics.com/

	Cover Story: Junebug Simulator
	Keypad Using One A/D Input
	Controlling a Hobby Servo Motor
	Standalone Power for the Junebug
	CSV 4 Channel A/D Recorder
	Tips & Tricks for the 18F
	#1	W is an SFR
	#2 	BRA vs GOTO
	#3 	Even Numbered Branching
	#4 	2 Cycle Delay using BRA $+2
	#5 	200,000 Cycle Delay
	#6 	Shifting Bits with 8x8 Multiply
	#7 	LAT vs PORT
	#8 	TABLRD vs RETLW
	 Junebug Naming & VDD Calibration
	Hello World and the UART tool
	Book of the month

