
PIC Application Notes

Page 76 • PIC Application Notes • TechTools

Introduction.
Example programs show how to receive RS-232 serial data at 300 and
1200 baud with a PIC running at 32.768 kHz.

Background. One of the PIC’s greatest virtues is its tremendous speed.
With instruction cycles as short as 200 nanoseconds and an inherently
efficient design, the PIC leaves comparably priced micros in the dust.

This makes it easy to forget about the LP-series PICs, whose virtue is
their ability to go very slow. At 32 kHz, these devices draw as little as
15µA; good news for battery- or solar-powered applications.

Life in the slow lane requires some slightly different techniques than
multi-megahertz PIC design. First of all, you’ll need to get acquainted
with the 32.768-kHz quartz crystal. This is the crystal of choice for LP
PICs. Why 32.768 kHz? It’s the standard timing reference for electronic
watches. It resonates exactly 215 times per second, making it easy and
inexpensive to build a chain of counters to generate 1-pulse-per-second
ticks. Because of common use in watches, 32.768-kHz crystals are
inexpensive (often less than a buck in single quantities) and accurate
[±20 parts per million (ppm), compared to the ±50 ppm common in
garden-variety clock crystals, or ±3000 ppm of ceramic resonators).

At a clock rate of 32.768 kHz, the PIC executes 8192 instructions per
second, with instruction cycles taking about 122.1 microseconds each.
Whether or not this is slow depends on your perspective—many appli-
cations spend most of their time in delay loops anyway.

The first circuit (figure 1a) is normally constructed with a comparator,
because of the fast switching requirements imposed by a clock oscilla-
tor. But for the pokey 32-kHz crystal, even an internally compensated op-
amp like the CA5160 works just fine. If you substitute another part for the
’5160, you will have to play with the values of the feedback resistor (10k)
and capacitor (0.001µF) to get the circuit to oscillate. If you use a
comparator with an open-collector output, don’t forget to add a pullup
resistor.

13: Running at 32 kHz

Running at 32 kHz

PIC Application Notes

TechTools • PIC Application Notes • Page 77

APPS
The second oscillator (figure
1b) uses a CMOS inverter as
its active element. In this case,
the role of the inverter is
played by one of the NOR
gates of a 4001 chip. Adjust-
ing the values of the 20-pF
capacitors slightly will fine-
tune the frequency of oscilla-
tion. Do not omit the 47-k
resistor on the output. The
capacitance of the OSC1 pin,
or other connected logic (say
a CMOS inverter or buffer)
will pull the oscillator off fre-
quency. It may even jump to
a multiple of 32.768 kHz. This
will throw your timing calcula-
tions way off.

With the help of one of these
oscillators, you can have
Downloader convenience in
the development of LP applications.

How it works. The application this time is a variation on application note
number 2, receiving RS-232 data. The circuit shown in figure 2 receives
RS-232 data at 300 or 1200 baud and displays it in binary form on eight
LEDs connected to port rb. The baud rate depends on the program used.
Listing 1 runs at 300 baud while listing 2 runs at 1200.

The previous fast-clock RS-232 application used a counter variable to
determine how many trips through a djnz loop the PIC should take. Each
loop burns up three instruction cycles, so the best resolution possible
with this type of delay is 3

*
(oscillator period/4). When the oscillator is

running at 4 MHz, resolution is a respectable 3 microseconds. However,
at 32.768 kHz, the resolution of a djnz loop is 366.3 microseconds!
There’s another method that provides 1-instruction-cycle resolution: the

1k

0.001µF

10k

32,768-Hz
XTAL

To Downloader
OSC1 terminal

Ð

+

+5

7

4
6

2

3

20pF

10M

32,768-Hz
XTAL

To Downloader
OSC1 terminal

100k

20pF

CA5160

1/4 4001
47k

1a

1b

Figure 1. 32.768-kHz clocks.

13: Running at 32 kHz

PIC Application Notes

Page 78 • PIC Application Notes • TechTools

nop table. To use this approach, you create code like this:

mov w,delay ;Put length of delay into w.
jmp pc+w ;Jump w nops into the table
nop ;The nops. Each does nothing

nop ;for 1 program cycle.
...
nop

; The program continues here.

The number in w represents the number of nops to be skipped, so the
larger the number the shorter the delay. If you need delays of varying
sizes at several points in the program, set the table up as a callable
subroutine. Don’t forget to account for the program cycles used by call
and return; two cycles each. For long delays, it would also make sense
to use a two-step approach that creates most of the delay using loops
and then pads the result with nops. Otherwise, you could end up filling
most of your code space with nops.

LED470

LED470

LED470

PIC
16C54

1

2

3

4

5

6

7

8

9

18

17

16

15

14

13

12

11

10

RA2

RA3

RTCC

MCLR

Vss

RB0

RB1

RB2

RB3

RA1

RA0

OSC1

OSC2

Vdd

RB7

RB6

RB5

RB4

+5

+5

RS-232
serial in

LED470

LED470

LED470

LED470

LED470

32,768-Hz
XTAL

22k

15- to 30-pF
caps

13: Running at 32 kHz

PIC Application Notes

TechTools • PIC Application Notes • Page 79

APPS
The RS-232 reception routine in listing 1 uses nop-table delays of 0, 12,
and 15 nops. If the program were expanded, other code could make use
of the nop table, too. When writing such a program, make sure not to
jump completely over the table!

Listing 2 uses the same circuit to receive 1200-baud serial data. A bit
delay at 1200 baud is 833.33 µs, which is 6.8 instruction cycles at 32.768
kHz. There’s no instruction that offers a 0.8-cycle delay, so the routine
gets bit 0 as early as possible after the start bit is detected (7 instruction
cycles) and then uses a 7-cycle delay between subsequent bits. The
program is written so that it samples the first bit early, and spreads the
timing error over the rest of the reception of the byte.

This approach is a little risky. It probably would produce errors if the line
were noisy or the timing of the serial transmitter’s clock were off. Still, it’s
a useful example of straight-line programming. In a real-world applica-
tion, the serial transmitter would have to be set for 1.5 or 2 stop bits in
order to give the program time to do anything useful with the received
data. During the time afforded by an extra stop bit, the PIC could stuff the
received by into a file register for later processing.

13: Running at 32 kHz

����������	
����
	����������������������������������� �!"#�����!�$

; This program receives a byte of serial data and displays it on eight LEDs
; connected to port rb. Special programming techniques (careful counting of
; instruction cycles, use of a nop table) allow a PIC running at 32.768kHz to receive
; data at 300 baud.

; Remember to change device info if programming a different PIC.
device pic16c54,lp_osc,wdt_off,protect_off
reset begin

half_bit = 14 ; Executes 1 nop in table.
bit = 3 ; Executes 12 nops in table.
stop = 0 ; Executes 15 nops in table
serial_in = ra.2
data_out = rb

; Variable storage above special-purpose registers.
org 8

bit_cntr ds 1 ; number of received bits
rcv_byte ds 1 ; the received byte

PIC Application Notes

Page 80 • PIC Application Notes • TechTools

; Org 0 sets ROM origin to beginning for program.
org 0

; Set up I/O ports.
begin mov !ra, #4 ; Use ra.2 for serial input.

mov !rb, #0 ; Output to LEDs.
:start_bit sb serial_in ; Detect start bit.

jmp :start_bit ; No start bit? Keep watching.
mov w,#half_bit ; Wait 1 nop (plus mov, call, and

; ret).
call nop_delay ; Wait half bit to the middle of start

; bit.
jnb Serial_in, :start_bit ; Continue if start bit good.
mov bit_cntr, #8 ; Set counter to receive 8 data

; bits.

:receive mov w,#bit ; Wait one bit time (12 nops).
call nop_delay
movb c,/Serial_in ; Put the data bit into carry.
rr rcv_byte ; Rotate carry bit into the receive

; byte.
djnz bit_cntr,:receive ; Not eight bits yet? Get next bit.
mov w,#stop ; Wait 1 bit time (15 nops) for stop

; bit.
call nop_delay
mov data_out, rcv_byte ; Display data on LEDs.
goto begin:start_bit ; Receive next byte.

nop_delay jmp pc+w
nop ; w = 0—executes 15 nops.
nop ; w = 1—executes 14 nops.
nop ; w = 2—executes 13 nops.
nop ; w = 3—executes 12 nops.
nop ; w = 4—executes 11 nops.
nop ; w = 5—executes 10 nops.
nop ; w = 6—executes 9 nops.
nop ; w = 7—executes 8 nops.
nop ; w = 8—executes 7 nops.
nop ; w = 9—executes 6 nops.
nop ; w = 10—executes 5 nops.
nop ; w = 11—executes 4 nops.
nop ; w = 12—executes 3 nops.
nop ; w = 13—executes 2 nops.
nop ; w = 14—executes 1 nop.
ret ; w = 15—executes 0 nops

; If w > 15, the program will jump into unprogrammed code memory,
; causing a reset.

13: Running at 32 kHz

PIC Application Notes

TechTools • PIC Application Notes • Page 81

APPS

13: Running at 32 kHz

����������
����
 ������	 ���������������������������� �!"#�����!�$

; This program receives a byte of serial data and displays it on eight LEDs
; connected to port rb. Straight-line programming allows a PIC running at 32.768kHz
; to receive data at 1200 baud. Since timing is so critical to the operation of this
; program, the number of instruction cycles required for each instruction appears in
; () at the beginning of most comments.

; Remember to change device info if programming a different PIC.
device pic16c54,lp_osc,wdt_off,protect_off
reset begin

serial_in = ra.2 ; RS-232 via a 22k resistor.
data_out = rb ; LED anodes.

; Variable storage above special-purpose registers.
org 8

rcv_byte ds 1 ; The received byte.

; Org 0 sets ROM origin to beginning for program.
org 0

; Set up I/O ports.
begin mov !ra, #4 ; Use ra.2 for serial input.

mov !rb, #0 ; Output to LEDs.

:start_bit sb serial_in ; (2) Detect start bit.
jmp :start_bit ; (2) No start bit? Keep watching.
nop ; (1)
sb serial_in ; (2) Confirm start bit.
jmp :start_bit ; (2) False alarm? back to loop.
nop ; (1)
nop ; (1)
movb rcv_byte.0,/serial_in ; (4) Get bit 0.
nop ; (1)
nop ; (1)
nop ; (1)
movb rcv_byte.1,/serial_in ; (4) Get bit 1.
nop ; (1)
nop ; (1)
nop ; (1)
movb rcv_byte.2,/serial_in ; (4) Get bit 2.
nop ; (1)
nop ; (1)
nop ; (1)
movb rcv_byte.3,/serial_in ; (4) Get bit 3.
nop ; (1)

PIC Application Notes

Page 82 • PIC Application Notes • TechTools

nop ; (1)
nop ; (1)
movb rcv_byte.4,/serial_in ; (4) Get bit 4.
nop ; (1)
nop ; (1)
nop ; (1)
movb rcv_byte.5,/serial_in ; (4) Get bit 5.
nop ; (1)
nop ; (1)
nop ; (1)
movb rcv_byte.6,/serial_in ; (4) Get bit 6.
nop ; (1)
nop ; (1)
nop ; (1)
movb rcv_byte.7,/serial_in ; (4) Get bit 7.
mov data_out,rcv_byte ; (2) Data to LEDs.
jmp :start_bit ; (2) Do it again

13: Running at 32 kHz

