I CHAPTER 9

Optical Systems

A pile of rocks ceases to be a rock pile when somebody contemplates it with the idea of a
cathedral in mind.
— Antoine de Saint-Exupéry, Flight to Arras

9.1 INTRODUCTION

An optical system is a collection of sources, lenses, mirrors, detectors, and other stuff that
(we hope) does some identifiable useful thing. We’ve talked about the pieces individually,
but until now we haven’t spent much time on how they work together. This chapter should
help you to think through the behavior of the system from end to end, to see how it ought
to behave. That means we need to talk about the behavior of light in systems: practical
aberration and diffraction theory, illumination and detection, and how to calculate the
actual system output from the behavior of the individual elements.

9.2 WHAT EXACTLY DOES A LENS DO?

In Section 4.11.2, we looked at the Gaussian (i.e., paraxial) imaging properties of lenses.
We were able to locate the focus of an optical system, calculate magnification, and
generally follow the progress of a general paraxial ray through an optical system by
means of multiplication of ABCD matrices.

Here, we concentrate on the finer points, such as the aberrations of an optical system,
which are its deviations from perfect imaging performance. We will use three pictures: the
pure ray optics approach, where the aberrations show up as ray spot diagrams where not
all the rays pass through the image point; the pure wave approach, where the aberrations
are identified with the coefficients of a polynomial expansion of the crinkled wavefront,
derived from exact calculation of the wave propagation through the system; and a hybrid
ray/wave picture. (See Figure 9.1.)

The hybrid picture is messy but useful and, in fact, is the basis of most “wave optics”
models. It takes advantage of the fact that ray optics does a good job except near focus or
in other situations where diffraction is expected to be important. Accordingly, we trace
rays to the vicinity of the exit pupil from a single object point, construct a wavefront
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Figure 9.1. Three ways of looking at an imperfect optical system: (a) ray spot diagram, (b) wave-
front polynomial expansion, and (c) wave aberration of rays.

whose phase is determined by the calculated propagation phase along the ray paths,
and then use wave optics from there to the focus. This is unambiguous unless rays
traversing widely different paths get too close to one another. By now you’ll recognize
this as another case of putting it in by hand, which is such a fruitful approach in all of
engineering.

The different pictures contain different information. A ray tracing run is very poor
at predicting the shape of the focused spot, but contains lots of information about the
performance of the system across the field of view. For example, field curvature and
geometric distortion show up clearly in a ray trace, since different field angles are pre-
sented at once, but tend to disappear in a pure wave propagation analysis, where only a
single field position can readily be considered at a time.

9.2.1 Ray Optics

Ray optics assumes that all surfaces are locally planar, and that all fields behave locally
like plane waves. To compute the path of a ray encountering a curved surface, we
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notionally expand the ray into a plane wave, and the surface into its tangent plane. We
then apply the law of reflection and Snell’s law to derive the direction of the reflected
and refracted k vectors, and these become the directions and amplitudes of the reflected
and refracted rays. This is a first-order asymptotic approach, valid in the limit ka — oo,
where a is the typical dimension of the surface (e.g., its radius of curvature, diameter,
or whatever is most appropriate). There is a slight additional subtlety. A single ray,
being infinitesimally thin, transports no energy; to find out the field amplitudes, we must
consider small bundles of rays, or pencil beams, occupying an element of cross-sectional
area dA, measured in a plane normal to their propagation direction. Conservation of
energy requires that the product of the ray intensity / dA be constant along the axis.
Curved surfaces and any refraction or diffraction will in general cause |dA| to change,
either by anamorphic magnification or by focusing. Thus in computing the contribution
Di of a given ray bundle to the intensity at a given point x’ from that at x, we must
multiply by the Jacobian,

dl(x) =dI(x)

. O.1)

dA’

If the incoming illumination is spatially coherent, we must instead sum the (vector)
fields, which transform as the square root of the Jacobian,

dE(X) = dE(x) ’dA . 9.2)

dA’

Going the other way, for example, computing a specular reflection by starting from the
obliquely illuminated patch to the propagating beam, we have to put in the reciprocal
of the obliquity factor—otherwise energy wouldn’t be conserved on reflection from a
perfect mirror. (See Section 9.3.5.) The mathematical way of putting this is that the
Jacobian of the oblique projection equals the ratio cos6/cos 6. We saw this effect in
radiation from planar surfaces in Section 1.3.12, and it shows up in wave optics as the
obliquity factor (see Sections 9.2.1 and 9.3.4).

9.2.2 Connecting Rays and Waves: Wavefronts

In order to move from one picture to another, we have to have a good idea of their
connections. The basic idea is that of a wavefront (Figure 9.2). Most people who
have had an upper-level undergraduate physical optics class will picture a wavefront
as a plane wave that has encountered some object (e.g., a perforated plane screen or
a transparency) and has had amplitude and phase variations impressed upon it. While
this picture isn’t wrong, it also isn’t what an optical designer means by a wavefront,
and the differences are a frequent source of confusion, especially since the same
diffraction integrals are employed and the conceptual differences are seldom made
explicit.

A physicist will tell you that a wavefront is a surface of constant phase, which can
have crinkles and ripples in it, whereas a lens designer will say it’s the deviation from
constant phase on a spherical surface centered on the Gaussian image point. In actual
fact, whenever people actually calculate imaging with wavefronts (as opposed to waving
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Figure 9.2. Wavefront definitions: (a) surface of constant phase and (b) deviation from a prespec-
ified spherical wave on a plane.

their arms) the real definition is the phase deviation, on a plane, from a spherical wave:
W(x) = K arg(e" "y (x)), ©.3)

where K is a constant that expresses the units in use: radians, waves (i.e., cycles), or
OPD in meters. As long as the deviations from sphericity are sufficiently small and slow,
the two descriptions are equivalent.

Deviations from the perfect spherical wave case are called aberrations; aberration
theory is in its essence a theory of the way phase propagates in an optical system.
Amplitude and polarization information is not given equal consideration, which leads to
the total disregard of obliquity factors, among other things. A vernacular translation is,
“it gives the wrong answer except with uniform illumination and small apertures, but is
close enough to be useful.”

Aside: Phase Fronts on the Brain. From what we know already of diffraction theory,
concentrating solely on phase like this is obviously fishy; an amplitude-only object such as
a zone plate can destroy the nice focusing properties, even while leaving the phase intact
initially. Neglect of amplitude effects is our first clue that aberration theory fundamentally
ignores diffraction. The software packages sold with some measuring interferometers
have serious errors traceable to this insistence on the primacy of phase information.
The author’s unscientific sample is not encouraging; he has had two such units, from



9.2 WHAT EXACTLY DOES A LENS DO? 313

different manufacturers, manufactured ten years apart. Both were seriously wrong, and in
different ways.

9.2.3 Rays and the Eikonal Equation

We have the scalar wave equation, which allows us to predict the fields everywhere in a
source-free half-space from an exact knowledge of the full, time-dependent, free-space
scalar field on the boundary of the half-space. In the limit of smooth wavefronts and
wavelengths short compared to D*/d (where D is the beam diameter and d the propa-
gation distance), we can neglect the effects of diffraction. In this limit, the gradient of
the field is dominated by the ik - x term, and each segment of the wavefront propagates
locally as though it were its own plane wave, Yiocal (X) & A exp(iKjocal - X).

Phase is invariant to everything, since it’s based on counting; we can look on the
phase as being a label attached to a given parcel of fields, so that the propagation of the
field is given by the relation between x and ¢ that keeps ¢ constant. That means that the
direction of propagation is parallel to Kjocal,

—iVy
klocal ~ w ’ (9~4)
which gives us a natural connection between rays and wavefronts.
If we take a trial solution for the scalar Helmholtz equation,
Y x) = A0, 9.5)

applying the scalar Helmholtz equation for a medium of index n and taking only leading
order terms as kg — oo suppresses all the differentials of A, which is assumed to vary
much more slowly than exp(ikyS), leaving the eikonal equation

IVSx)|* = n(x), (9.6)

where the eikonal S(x) is the optical path length (it has to have length units because
koS must be dimensionless). Once we have S, we can get the propagation direction from
(9.4). What’s more, Born and Wolf show that in a vector version of this, the Poynting
vector lies along V.S, so in both pictures, (9.6) is the natural connection between rays
and waves.

This connection is not a 1:1 mapping between rays and waves, however. The eikonal
can be used to attach rays to a wavefront, then trace the resulting rays as usual, but that
procedure doesn’t lead to the same results as propagating the field and then computing
the eikonal, because the whole eikonal idea breaks down near foci and caustics, as well as
having serious problems near shadow boundaries. The approximation becomes worthless
at foci because the phase gradient vectors can never really cross; that would require
a field singularity, which is impossible for the wave equation in a source-free region.
Another way to say this is that the optical phase can be made a single-valued function
of position in any given neighborhood, and therefore its gradient is also a single-valued
function of position. So identifying rays purely as gradients of the phase cannot lead to
rays that cross. For example, the eikonal equation predicts that a Fresnel amplitude zone
plate (see Section 4.13.2) has no effect on wave propagation other than blocking some
of the light.
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The eikonal approximation shares the wave optics difficulty that there’s no simple way
to include multiple source points in a single run; the total field has only one gradient at
each point.

9.2.4 Geometrical Optics and Electromagnetism

Geometrical optics (GO) is an asymptotic electromagnetic theory, correct in the limit
k — oo. Like most asymptotic theories (e.g., the method of steepest descents), it requires
some funny shifts of view. We go back and forth between considering our ray to be
infinitesimally narrow (so that all surfaces are planes and all gradients uniform) and
infinitely broad (so that the beam steers like a plane wave). The way a GO calculation
goes is as follows:

1. Pick some starting rays, for example, at the centers of cells forming a rectangular
grid on the source plane. Assign each one an amplitude and phase. (You can do
GO calculations assuming incoherent illumination, but you’re better off computing
the amplitudes and phases of each ray and applying random phasor sums to the
results—it’s computationally cheap at that stage and avoids blunders.)

2. Assuming that the true optical field behaves locally like a plane wave, apply the
law of reflection, Snell’s law, and so on, to follow the path of the ray to the
observation plane.

3. Add up the field contributions at the observation plane by computing the optical
phase (the integral of k - ds over the ray path) and amplitude from each ray and
summing them up. Remember to apply the Jacobian—if you imagine each ray
occupying some small patch of source region, the area of the patch will in general
change by the time it gets to the observation plane. This isn’t mysterious, it’s just
like shadows lengthening in the evening. Field amplitudes scale as the reciprocal
square root of the area. If the ray directions at the observation plane are similar,
you can add up the fields as scalars. Otherwise, you’ll need to be more careful
about the polarization. Nonplanar rotations of k will make your polarization go all
over the place.

You can trace rays in either direction, so if only a limited observation region is of
interest, you can start there and trace backwards to the source. Either way, you have to
make sure you have enough rays to represent the field adequately. You have to think of
a GO calculation as involving nondiffracting rectangular pencil beams, not just rays; in
general, the patches will overlap in some places, and you have to add all the contributions
in complex amplitude.

In an inhomogeneous but isotropic medium, the geometric optics laws need to be
generalized slightly. The local direction of wave propagation is the gradient of the phase.
This leads to the eikonal equation (9.6) or the curvature equation (9.12), which are
differential equations giving the change of the ray direction as a function of distance
along the ray. Note that the Jacobian has to be carried along as well if you want to
get the correct answer for the field amplitudes. If the medium is anisotropic as well as
inhomogeneous, life gets a good deal harder, as you have to carry along the polarization
state and any beam walkoff as well as the k vector and Jacobian as you go. If you have
sharp edges, caustics, or shadows, geometric optics will give you the wrong answers
there—it ignores diffraction, will exhibit square-root divergences at caustics and edges,
and will predict zero field in the shadow regions.
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9.2.5 Variational Principles in Ray Optics

Some propagation problems yield to a less brute-force approach: calculus of variations.
If the medium is nonuniform, so that » is a function of x, we need to put an integral in
the exponent instead,

Y (x) = A(X) exp |:—iwt + iko/ n(x)dsj| , 9.7)
path

as in the eikonal approximation (9.5). Since the ray path depends on n, we don’t know
exactly what path to do the integral over, so it doesn’t look too useful. In fact, we’re
rescued by Fermat’s principle, a variational principle that states that

NS (S/ n(x)ds = 0; (9.8)
path

that is, the integral has an extremum on the true ray path P. The path yielding the
extremum is said to be an extremal. Fermat called it the principle of least time,
which assumes that the extremal is a global minimum. There’s obviously no global
maximum—a given path can loop around as much as it wants—so this is a good bet.

We solve variational problems of this sort by imagining we already know the
parametrized P = x(u), where x(0) is the starting point X ¢, X(u#1) is the end point X,
and u is a dummy variable. We demand that a slight variation, € Q(u#) (with Q =0 at
the ends of the interval), shall make a change in S that goes to O faster than € [usually
O(€?)] as € — 0. Since the arc length is all we care about, we can parameterize the
curve any way we like so we’ll assume that x is a continuous function of u# and that
dx/du # 0 in [0, u]. Thus

/ul ((n(x) +€Q - Vn) %+ €Q| — n(X)|x]) du = O(€?), (9.9)
0

where dotted quantities are derivatives with respect to u. Since it’s only the € term we’re
worried about, we series-expand the squared moduli, cancel the zero-order term, and
keep terms of up to order €, which yields

/ul ("X Q. qo- Vn> du =0, (9.10)
0

x|

which isn’t too enlightening until we notice that it’s nearly a total derivative, with one
term in Q and one in Q. Integrating by parts, and using the fact that Q = 0 at the ends
and is continuous but otherwise arbitrary, we get the result

Vn —x(x-Vn) _ X — x(x-X))
n B %2

, 9.11)

which can be written more neatly by changing back to arc length and using the convention
that V is the gradient perpendicular to x, yielding the curvature equation

VJ_I’! d2X
n STl
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This says that the curvature of the path is equal to the perpendicular gradient of logn,
which makes a lot of physical sense, since we don’t expect the path to change when we
(say) double the refractive index everywhere. "

9.2.6 Schlieren Effect

One interesting consequence of the curvature equation (9.12) is that light waves steer
like tanks: they turn toward whichever side goes more slowly. Accordingly, a refractive
index gradient causes the wave to bend, the schlieren effect. Since dn/dT < 0O for gases,
a temperature gradient in air produces schlieren, which is why there are mirages. On a
hot, sunny day, the ground is warmer than the air, so dn/dz < 0 and light bends upwards;
an image of a patch of sky appears near the ground in the distance, looking like a pool of
water. At sea, with the opposite sign of d7 /dz, a ship becomes visible before it crosses
the geometrical horizon. More complicated gradients can cause multiple images, as in the
beautifully named fata Morgana (after Morgan Le Fay, King Arthur’s nemesis); ghostly
shorelines with fantastic mountains can appear in the middle of the ocean. (Who said
there was no poetry in optics?)

There are a couple of examples that show up more often in instruments: thermal
lensing, which is pretty much like a mirage, and gradient-index (GRIN) optics, as we
saw in Sections 4.13.1 and 8.3.5. Thermal lensing in nonaqueous liquids can be a big
effect—big enough to be a sensitive laser spectroscopy method. A visible probe laser
traverses a long path in some solvent, coaxially with an infrared pump beam. An axially
symmetric temperature gradient results in progressive defocusing of the probe beam,
which can be detected very sensitively with a masked detector. Water is a disappointing
solvent for thermal lensing, with a low dn/dT and a high thermal conductivity.

9.2.7 The Geometrical Theory of Diffraction

For objects whose typical dimension a is large compared to a wavelength, the ordi-
nary ray optics laws (the law of reflection and Snell’s law) apply with high absolute
accuracy except near shadow boundaries and places where rays cross—foci and caus-
tics. (The relative accuracy is of course also very bad inside shadows, where geometric
optics predicts zero fields.) For such large objects, it is reasonable to apply a local cor-
rection in these situations, the geometrical theory of diffraction (GTD), formulated by
Keller,¥ Ufimtsev,® and others. Like ray optics, GTD is an asymptotic theory valid in
the limit ka > 1, but it lets us include higher order terms to get better accuracy. The
basic idea is that illuminated bodies follow geometrical optics (GTD) or physical optics
(PTD) except within a wavelength or two of shadow boundaries and sharp edges. Large
objects (ka > 1) can be looked on as arrangements of flats, curved regions, and edges,

TExtremals that minimize some smooth functional such as (9.9) are called weak extremals, because the true
minimum may not be continuous. If discontinuous and unsmooth functions are considered, the result is called
a strong extremal. The strong extremal is usually a global minimum, never a maximum, but sometimes just
a local minimum. If you don’t know any calculus of variations, consider learning it—it isn’t difficult, and
it’s a great help in optical problems. The book by Gelfand and Fomin (see the Appendix) is a good readable
introduction.

J. B. Keller, Geometric theory of diffraction. J. Opt. Soc. Am. 52, 116—130 (1962).

$Pyotr Y. Ufimtsev, Method of Edge Waves in the Physical Theory of Diffraction. Available at http://handle.dtic.
mil/100.2/AD733203.
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Figure 9.3. GTD and PTD calculations combine geometrical or physical optics calculation with a
correction factor due to the vector diffraction from edges and shadow boundaries: (a) edge waves
from discontinuities and (b) creeping waves from curves.

and the scattered fields can be decomposed into sums over those individual contri-
butions. Locally these can be described as flat, ellipsoidal, cylindrical, wedge-shaped,
or conical—all shapes for which rigorous analytic solutions exist, at least in the far
field. The beautiful trick of PTD is to take each of these canonical cases, solve it
twice—once rigorously and once by physical optics—and then subtract the two solu-
tions, yielding the edge diffraction contribution alone. For sharp edges, this is expressed
as a line integral around the edges, turning a 3D problem into a 1D problem. In
most calculations the diffracted contributions are further approximated as diffracted
rays. (Curved surfaces give rise to creeping rays, which are harder to deal with—the
F-117A stealth fighter is all flats and angles because it was designed using 1970s
computers.)

The two kinds of diffracted rays are shown in Figure 9.3: edge rays, which emanate
from each point of discontinuity, such as a corner or an edge, and creeping rays, generally
much weaker, which emanate from shadow edges on smooth portions of the surface.

So the way it works is that you do the calculation via geometrical or physical optics,
which ignores the edge contributions, and then add in the vector diffraction correction in a
comparatively simple and computationally cheap way. Complicated geometries will have
important contributions from multiple scattering, leading to a perturbation-like series in
which nth order terms correspond to n-times scattered light.

These approximations are usually very complicated, but on the other hand, they contain
information about all incident and scattered angles, all positions, and all wavelengths,
in one formula. The information density in that formula dwarfs that of any numerical
solution, and frequently allows algebraic optimization of shapes and materials, which is
very difficult with numerical solutions. This makes GTD and PTD well suited for design
problems, especially with computer algebra systems available for checking.

GTD approximations tend to diverge as x~!/? at shadow boundaries, caustics, and
foci, which of course are points of great interest. The same idea, local approximation
by analytically known results, can be used to get a uniform asymptotic approximation,
valid everywhere. For details, see the IEEE collected papers volume' and the excellent
monographs of Ufimtsev and of Borovikov and Kinber referenced in the Appendix.

TRobert C. Hansen, ed., Geometric Theory of Diffraction, IEEE Press, New York, 1981.
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9.2.8 Pupils

The entrance pupil is an image of the aperture stop, formed by all the elements ahead
of the stop, and the exit pupil is the image of the same stop formed by all succeeding
ones. Thus they are images of one another, and each point in the entrance pupil has
a conjugate point in the exit pupil. Since nobody really knows what a lens does, we
rely on this property heavily in wave optics calculations of imaging behavior. The most
consistent high-NA approach to the problem is to use the ray optics of thin pencil
beams to construct the fields on the pupil plane, and then propagate from there to the
image using the Rayleigh—Sommerfeld integral. Remember the ray/wave disconnect:
in the wave picture, pupil refers to the Fourier transform plane, not to the image of
the aperture stop. (Like most ray/wave terms, the two are related but generally not
identical.)

Not all imaging optical systems possess proper pupils; for example, a scanning system
with the x and y deflections performed by separate mirrors lacks one unless intervening
optics are included to image one mirror onto the other. An optical system without a
pupil is not a shift-invariant system, so that Fourier imaging theory must be applied with
caution.

9.2.9 Invariants

There are a number of parameters of an optical beam which are invariant under magni-
fication. One is the state of focus: if an object point is 1 Rayleigh range from the beam
waist, its image will be at 1 Rayleigh range from the waist of the transformed beam
(neglecting diffraction). This is because the longitudinal magnification of an image is not
M but M?.

The best known is the Lagrange invariant, which we’ve encountered already as the
conservation of étendue. You can get this by putting two rays as the columns of a 2 x 2
matrix R. No matter what ABCD matrix you hit R with, the determinant of the result is
equal to Det(R): x16, — x,0; is invariant in the air spaces in any paraxial optical system.
If we generalize to the case n # 1, the ABCD matrix that goes from n; into ny is

! 0 9.13
0 ni/ny |’ ©-13)

whose determinant is n/n,, so the generalized Lagrange invariant L is
L =n(x102 — x201). (9.14)

The more usual form of this is the theorem of Lagrange, where for a single surface
between media of indices n; and n»,

n1x191 = n2x292. (915)

Another invariant is the number of resolvable spots, which is the field of view diameter
or scan distance measured in spot diameters; if we take the two ends of the scan to be
the two rays in the Lagrange invariant, the range goes up as the cone angle goes down,
and hence the spot size and scan angle grow together.
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9.2.10 The Abbe Sine Condition

The Lagrange invariant holds for paraxial systems, but not for finite apertures. Its most
natural generalization is the Abbe sine condition,

nixysin@; = nox, sin s, (9.16)

which we don’t get for free. (Optical design programs include offense against the sine
condition (OSC) in their lists of aberrations.) A system obeying the sine condition is
said to be isoplanatic, and has little or no coma.” Like other aberration nomenclature,
this term has a related but not identical meaning in the wave picture: an optical system
is said to be isoplanatic if its transfer function does not vary with position in the image.
You can see that this is a different usage by considering vignetting; a few missing
rays won’t make the sine condition false, but they will certainly change the transfer
function.

Aside: NA and f-Number. 1t’s possible to get a bit confused on the whole subject of
numerical aperture and f-number, because there are two competing definitions of f# in
common use. One, historically coming from photography, is

f#= D/EFL = 1/(2tan#),

where D is the pupil diameter, 0 is the half-angle of the illuminated cone, and EFL is
the effective focal length (just focal length f to us mortals). There’s no clear upper limit
to this number—Ilight coming in from a hemisphere effectively has an infinite radius at
any nonzero focal length, so f# = oo.

The other definition, coming from microscopy, is

f#=1/(2sin0) = 0.5/NA,

assuming n = 1. Since NA < 1 in air, in this definition a hemispherical wave would be
coming in at f/0.5. The two are equivalent for small NA and distant conjugates, so they’re
often confused. Photographers care most about image brightness, since that determines
exposure, so the quoted f# on the lens barrel actually applies on the image side of the
lens, and is nearly constant as long as the object distance d, > f. Microscopists care
most about resolution, so microscope NA is quoted on the object side, where it’s also
nearly constant because of the small depth of focus. The two definitions express the same
information, but confusion is common when we don’t keep them straight. (The author
recommends the 0.5/NA definition as being closer to the imaging physics as well as
giving a simpler exact formula for image brightness, since n°Q’ = m(NA)?.)

9.3 DIFFRACTION

There is not enough space in this book to treat diffraction in complete detail. For purposes
of measurement systems, diffraction is important in four ways: in imaging; in gratings

TOptical system design is full of forbidding terms like that, but don’t worry—half an hour’s work and you’ll
be obfuscating with the best of them.



320 OPTICAL SYSTEMS

and holograms; in spatial filtering; and in vignetting, the incidental cutting off of parts of
the beam by the edges of optical elements, apertures, and baffles. We’ve already covered
the ordinary Huyghens—Fresnel theory in Section 1.3, so this section concentrates on the
finite-aperture case.

9.3.1 Plane Wave Representation

Monochromatic solutions to the scalar wave equation in free space can be expressed
exactly as sums of plane waves of different k. The k-space solution is exactly equivalent
to the real-space solution; no approximation is involved. Thus if we have a focused beam,
and we know its plane wave spectrum exactly, we can calculate its amplitude and phase
at any point (x, 1) we like. It’s important to hold on to this fact in discussing diffraction;
once we have specialized to the scalar case, there are no further approximations in the
actual wave propagation calculation. The additional approximations of diffraction theory
involve how spatial Fourier coefficients on surfaces couple into plane waves, and how
an obstruction in a free-space beam modifies its plane wave spectrum.

The easiest case is a plane boundary, because different plane waves are orthogonal
on that boundary; thus a Fourier transform of the fields on the surface, appropriately
weighted, gives the plane wave spectrum directly. Life gets significantly harder when
the boundary is nonplanar. There are a handful of other coordinate systems in which
the Laplacian separates, but the only three useful ones are Cartesian, cylindrical, and
spherical. (Ellipsoidal coordinates are a special case of spherical for electrostatics, but
not for electrodynamics.) Generally, though, unless you’re a glutton for punishment,
you have to choose among plane interfaces, asymptotically large spheres, and numerical
solution.

9.3.2 Green’s Functions and Diffraction

The study of diffraction is based on the idea of the Green’s function, which is the response
of a system consisting of a linear partial differential equation plus boundary conditions
to a source term of §(x — x’). There is so much confusion around as to what the origins
and limitations of diffraction theory are that it seems worth going through the math here.
The following discussion follows Jackson fairly closely, so look there for more detail if
this is unfamiliar. We solve the equation for the Green’s function, and then we can solve
the equation by a superposition integral of the source term f(x') (neglecting boundary

terms),
V(x) = / / / F&ENGx, x)d>x'. 9.17)
all space

The usual case in diffraction theory is a bit more complicated, in that we actually
have the field (rather than a source) specified on some surface, which may or may not be
one of the boundaries of the space. Boundary conditions couple to the normal derivative
of the Green’s function, fi - VG. (Don’t confuse n the refractive index with n the unit
vector normal to the surface.)

We’ll specialize to the Helmholtz wave equation, so the defining equation for G is

(V2 + k)G (x,X) = =83 (x — X)). (9.18)
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The two Green’s functions of interest are G, the one for free space,

exp (ik|x — x
Gotx, ) = T2 KX~ ) 9.19)
4r|x — x|
and G, the one for Dirichlet boundary conditions on the plane z = 0,
exp (ik|x — x’ exp (ik|x — x”
Gx,x) = SPUKI =X _ exp (ikix = X)) 9.20)

4 |x — X/| 4 |x — x|

where x”/ is the mirror image of x'.
Green’s theorem is a straightforward corollary of the divergence theorem,

f f fv<¢ V2 -y V) dx = #S (¢% —y a¢> ©.21)

where surface S encloses volume V. If we choose ¢ = G, and make S the plane z =0
plus a hemisphere off at infinity, then by applying the wave equation and the definition
of G, we get the Rayleigh—Sommerfeld integral

Y(x) = // exp (ikix —x') <1+ i ,>n'(x X)w(x)d2 ' (922)

Ix —x| kix —x'1/) Ix —x|

A limiting argument shows that the contribution from the hemisphere goes to 0.
If we choose G instead, we get the Kirchhoff integral ,

)= CXpUkR) I'o) 'k(l R "dA 9.23)
wX)__E/;OTI: ¢ +i —i-ﬁ)—w]n . .

These scary-looking things actually turn out to be useful—we’ll revisit them in
Section 9.3.6.

Ideally what we want is to find the exact plane wave spectrum of the light leaving S for
a given plane wave coming in, because that makes it easy to do the propagation calcula-
tion. Getting the correct plane wave spectrum is easy for a planar screen, since different
plane waves are orthogonal on a plane, and because we can use the correct Green’s
function in the planar case (the Rayleigh—Sommerfeld theory). For more complicated
boundaries, life gets very much harder since analytically known Green’s functions are
rare, and plane waves are not then orthogonal on S, so we can’t just Fourier transform
our way out of trouble. The surfaces of interest are usually spheres centered on some
image point, so we’d need to expand in partial waves, and then find the plane wave
spectrum from that. Fortunately, there’s an easier way.

Aside: Theory That’s Weak in the Knees. One problem for the outsider coming
to learn optical systems design is that it’s a pretty closed world, and the connections
between the scalar optics of lens design and the rest of optics are not clearly brought out
in books on the subject, or at least those with which the present author is familiar—it
isn’t at all obvious how a given ray intercept error influences the signal-to-noise ratio, for
example. This is not helped by the uniformly inadequate presentation of the theoretical
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underpinnings, which almost always base Fourier optics on the Fresnel approximation
and aberration theory on a sloppy use of the Huyghens propagator.

A charitable interpretation of this is that it is an attempt to make the subject accessible
to undergraduates who don’t know anything about Green’s functions. Yet it is unclear
how they are aided by such sloppiness as defining the wavefront on a spherical reference
surface near the exit pupil, then doing the integrals as though it were a plane.

Some claim that this is the Kirchhoff approximation (it isn’t), and others unapolo-
getically toss around the (paraxial) Huyghens integral on the spherical surface, even for
large-aperture lenses. The funny thing about this is that, apart from neglect of obliquity,
they get the right result, but for the wrong reasons. It matters, too, because the confusion
at the root of the way the subject is taught damages our confidence in our results, which
makes it harder to calculate system performance with assurance. If you’re an optics
student, ask lots of rude questions.

9.3.3 The Kirchhoff Approximation

Usually we have no independent way of measuring the actual fields on the boundary
and are reduced to making a guess, based on the characteristics of the incoming wave.
The Kirchhoff approximation says that, on surface S, the fields and their derivatives are
the same as the incoming field in the unobstructed areas and 0 in the obstructed ones.
This turns out to work reasonably well, except for underestimating the edge diffraction
contribution (see Section 9.2.7). The degree of underestimate depends on the choice of
propagator (see below); empirically the Kirchhoff propagator does a bit better on the
edge diffraction contribution than the Rayleigh—Sommerfeld propagator.

You can find lots more on this in Stamnes, but the net is that these physical optics
approximations work pretty well for imaging and for calculating diffraction patterns,
but it won’t get fine details right, for example, the exact ripple amplitude, and will
underestimate the field in the geometric shadow regions. You need GTD or PTD to do
that properly.

9.3.4 Plane Wave Spectrum of Diffracted Light

In Section 1.3, we used the Huyghens propagator, which in real space is

L =x) (=)
i exp | ik e —2)
O, y,2) = — // O,y 7) dx'dy’,  (9.24)
A P (Z — Z/)
where P is the xy plane, and in k-space is
O, y,z) = // O(u, U)|Zzoei(2n/)»)(ux+vy)e—i(2ﬂz/x)(u2+v2)/2du dv, (9.25)
P’ '

where P’ is the uv plane.

If a beam gets cut off sharply, it scatters strong fringes out to high angles. Being
a paraxial approximation, the Huyghens integral requires very large values of z — 7’
to be used in that situation. The Rayleigh—Sommerfeld result (9.22) is the rigorously
correct scalar solution for a correctly given (x) on the plane z = 0, because it is based
on the correct Green’s function for a half-space above that plane. To get the k-space
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representation (angular spectrum), we choose x to be on the surface of a very large
sphere of radius R, and neglect the constant term —ie'*"/R, which yields

Y, v) = W / / exp (iZT”(ux’ + vy’)) v, yydx'dy,  (9.26)
P

where u and v are the direction cosines in the x and y directions as before, w = (1 —
u? — v¥)2 = k_/k, and circ(x) is 1 for 0 < x < 1 and 0 otherwise. It is clear from this
equation that the k-space solution is the Fourier transform of the fields on the boundary,
multiplied by a factor of —ik, = 2wiw /A = ik cos 6, where 6 is the angle of incidence
of the outgoing light. A heuristic way of looking at this uses a pencil beam rather than a
plane wave. A circular beam coming from a surface at an incidence angle of 6 occupies
an elliptical patch on the surface, whose area is ma” sec 6. On this patch, the field
strength is not diminished by spreading out (different places on the long axis of the
patch are seeing the same beam at different times), so the obliquity factor w = cos 6 is
required to counteract the tendency of the integral to become large as the angle approaches
grazing. (We saw this as the Jacobian in Section 9.2.1 and in the drinking-straw test of
Section 1.3.12.)
The k-space Kirchhoff integral is similar,

W (u, v) = (Wine + w) circ(l — w) /// exp (izTn(ux/ + vy’)) 1)b(x/’ y/)dx’dy’,

2\

(9.27)
which is just the same as the far-field Rayleigh—Sommerfeld integral except for the
obliquity factor. The Neumann boundary condition case, where fi - Vi is specified on
the boundary, yields the same Fourier transform expression with an obliquity factor of
winc. The three propagators are all exact since they predict the same fields if the source
distribution is correct—they differ only when we make an inaccurate guess at ¢ (x, y).

9.3.5 Diffraction at High NA

Diffraction from apertures in plane screens can be calculated for all z by assuming that
the field is the same as the incident field in the aperture, and zero elsewhere. In imaging
problems, the screen has reflection or transmission amplitude and phase that depend on
position. If we just take the incident field as our guess, we wind up suppressing the
high-angle components by the obliquity factor (see Section 9.2.1), so in fact we have to
put the reciprocal of the obliquity factor into the illumination beam in order for energy
to be conserved (i.e., multiply by the Jacobian of the inverse transformation). This is
physically very reasonable, since the screen could have a transmission coefficient of 1
(i.e., not be there at all), in which case the plane wave components had better propagate
unaltered.

If the illumination beam has high NA, then the obliquity factors of the plane wave
components of the illumination beam will be different, and that has to be taken into
account. If the object has only low spatial frequencies, and doesn’t have large phase
variations due to topography, then each plane wave will be scattered through only a
small angle, so that cos € doesn’t change much, and the obliquity factors cancel out.
This effect is partly responsible for the seemingly unaccountable success of Fourier
optics at high NA.



324 OPTICAL SYSTEMS

As we discussed in Section 1.3.9, the simple thin object model used in diffraction
imaging theory is a complex reflection coefficient, which depends on x and not on k.
Height differences merely change the phase uniformly across the pupil. This works fine
as long as the maximum phase difference across the pupil is smaller than a wave, i.e.,
we’re within the depth of focus, and providing we take a weighted average of the phase
shift over the entire pupil, i.e., the phase shift with defocus isn’t k,z anymore (see
Example 9.4).

9.3.6 Propagating from a Pupil to an Image

We’re now in a position to say what the exact scalar field propagator is between a pupil
and an image. Consider the exit pupil plane of an optical system, with a mildly wrinkled
wavefront that is basically a spherical wave centered on the nominal image point X,

—ik|x'—xg|

Y(x) = AX)—-, (9.28)

Ix" —Xo|

where the pupil function Aisa complex envelope that carries the amplitude and phase
information we care about. (In a little while it will be apparent that the natural variables
for expressing A are the direction cosines u and v, just as in the paraxial theory.) We're
interested in the structure of the image, so we use the Rayleigh—Sommerfeld integral to
propagate to x| = X + ¢, where || is assumed to be small compared to |x" — xo|. We
further assume that 1/(k|x’ — x|) < 1, that is, we’re in the limit of large Fresnel number,
which allows us to discard that term (which turns out to represent the evanescent fields
and pupil edge diffraction), so we write (where P’ is the uv plane as before)

AKX) d’x'.  (9.29)
x —x/| [xo — X/| x —x/|

Y(x) = %/‘/‘/ exp(ik|x —x/|) exp(—ik|xg —X']) z , n-(x —X)

Note that we haven’t made any assumptions about small angles or slowly varying
envelopes—apart from the scalar field and discarding the evanescent contributions, this
is an exact result. Providing that ¢ is small compared to [x — X'|, we can ignore it in the
denominator, but since it isn’t necessarily small compared to 1/k, we have to keep it in
the exponent. Doing a third-order binomial expansion of the exponent, we get

(x0 —x)(¢ - (x0 — X))
T .
IXo+¢ —X|—|xo—X|=2¢- ~+¢- ; + 0().

X0 — X/| 2[xp — X/|

(9.30)

The first term is the phase along the radial vector, which as usual is going to turn
into the kernel of a Fourier transform; the second is the phase due to the length of the
vector changing. (Note that there is no radial component of the phase in order ¢2.) If we
were in the paraxial case, we’d just forget about terms like that, or at most say that the
focal surface was a sphere centered on X', but the whole point of this discussion is that
x' — xo be allowed fractional variations of order 1, so we can’t do that.
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What we do need to do is restrict ¢. In order for the ¢? term to be small compared

to 1/k, it is sufficient that
AX — Xp|
4] K . (9.31)

Since we imagine that the pupil function has been constructed by some imaging sys-
tem, the rays have been bent so as to construct the spherical wavefront. For consistency,
we must thus put in the inverse of the obliquity factor, and the fi - (xo — X’) term then
goes away to the same order of approximation as neglecting ¢ in the denominator.” We
also transform into direction cosines, so that (dx, dy) = |xo — X'|(du, dv), which leaves
a pure inverse Fourier transform,

1 iku-¢ §
U(x) = — // "™ A(w)dudv. (9.32)
rJJp

For a pupil-image distance of 20 mm and a wavelength of 0.5 um, this Fraunhofer-
type approximation is valid in a sphere of at least 100 um in diameter, even at NA = 1.
In order to cause the image to deviate seriously from the Fourier transform of the pupil
function, there would have to be hundreds of waves of aberration across the pupil, so
that for all interesting cases in imaging, where the scalar approximation applies, Fourier
optics remains valid. This applies locally, in what is called the isoplanatic patch, and
does not imply that the whole focal plane is the Fourier transform of the whole pupil,
as it is in the paraxial case, because that depends on things like the field curvature and
distortion of the lens, and the different obliquities at different field positions.

This analysis applies backwards as well, in going from a small-diameter object to the
entrance pupil of the lens, although if the object is a material surface and not itself an
aerial image, the usual thin-object cautions apply. The combination of the two shows
that an object point is imaged to an image point, and that the point spread function of
the system is the Fourier transform of the pupil function A, at least in the large Fresnel
number limit.

This is really the main point: the imaging of an object point into an image point via
a pupil is controlled by Fourier optics in all cases, and for an imaging system faithful
enough to deserve the name, the amplitude PSF of the imaging operation really is the
Fourier transform of the pupil function A, regardless of NA.

Example 9.1: High-NA Fourier Optics—Metal Lines on Silicon at NA = (0.95.
Figures 9.4 and 9.5 show the Fourier optics result versus experiment for a 90 nm tall
line of gold on silicon. Even though the scalar Fourier optics approximation to high-NA
imaging is a fairly sleazy one, it nevertheless works extremely well in practice.

Example 9.2: When Is the Paraxial Approximation Valid? The special case of a per-
turbed spherical wave is very important in applications, but the usual Fourier optics result
is more general; the far-field pattern is the Fourier transform of the pupil function. What
is the range of validity of that approximation?

"For a system of unit magnification, this cancellation is exact when both the object-to-pupil and pupil-to-image
transforms are computed; when the magnification is not 1, the pupil function A will need some patching up,
but that’s not a fundamental objection at this point.
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Figure 9.4. Heterodyne microscope image of Au lines on Si, 515 nm, 0.90 NA: amplitude.
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Figure 9.5. Au lines on Si: phase.

Comparison of the Huyghens integral with the Kirchhoff and Rayleigh—Sommerfeld
ones shows two differences: the Huyghens integral omits the obliquity factor, and for
a plane wave component exp(i2w (ux 4+ vy)/A), the Huyghens integral replaces the true
phase shift kz(w — 1) by the first term in its binomial expansion, apparently limiting
its use to applications where this causes a phase error of much less than 1 (it is not
enough that it be much less than kz because it appears in an exponent). If we require
that the next term in the binomial expansion be much less than 1, we find that this

requires that
3/ x4
lz] > X (9.33)
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This restriction is necessary for general fields, but not for paraxial ones. The slowly
varying envelope equation is

d’e 4’0 doe
— 4+ — +2ik— =0. 9.34
e + e +2i e (9.34)

Its validity depends solely on the initial conditions; a sufficiently slowly varying
envelope will be accurately described by this equation for all z. For slowly varying ®
and small z — Z’, the error in the phase term does indeed become large, but a stationary
phase analysis shows that the large-x contribution to the integral goes strongly to zero
as z — 7/, due to the rapidly varying phase factor, so that the integral remains valid for
all z, and the Huyghens integral is not limited to far-field applications. This is perhaps
easier to see in the spatial frequency representation.

If we take Oy (x) = €/**¢/7? in (9.34), requiring the phase error to be small compared
to 1 leads to (9.33) for fixed « of order &, and an absolute phase error that grows secularly
with z, as one would expect. This is not a deadly error, as it amounts only to a deviation
of the field curvature from spherical to parabolic; if we take as our reference surface
a parabola instead of a sphere, it goes away; it may make the calculated optical path
incorrect, and in applications where that matters, it should be checked by comparison
with the Rayleigh—Sommerfeld result.

For fixed z, the restriction can be applied to « instead:

k3
ol < — (9.35)

This is easily satisfied for small z as well as large.

9.3.7 Telecentricity

As Figure 9.6 illustrates, a telecentric optical system is one in which the principal ray is
parallel to the optical axis. This means that, roughly speaking, the axis of the cone of
light arriving at the image or leaving the object is not tilted, and is equivalent to saying
that the pupil is at infinity. An optical system can be telecentric in the object space, the
image space, or both.

Focal Plane

Aper‘(ureSto%
]
|

f f

Figure 9.6. A telecentric optical system.
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This property is of more practical interest than it may sound. In a telecentric sys-
tem, tilting the sample or moving it in and out for focusing does not change the
magnification—the image is an orthographic projection, like an engineering drawing.
Light reflected from a plane sample, such as a microscope slide or a flat mirror, retraces
its path. Both of these properties are very useful for scanning or imaging interferometers
such as shearing interference microscopes.

In a telecentric imaging system with telecentric illumination, the illumination diagram
is independent of position; all points in the field of view are imaged with light covering
the same range of angles. Because both the illumination and collection NAs are constant,
the range of spatial frequencies received is the same everywhere too. These two properties
together give telecentric systems nearly space-invariant point spread functions. This is
of great benefit when interpreting or postprocessing images, for example, in automatic
inspection systems. Obviously a telecentric system can have a field of view no larger
than its objective (the last optical element on the outside), and usually it’s significantly
smaller.

9.3.8 Stereoscopy

Stereoscopic vision requires the ability to look at a scene from two different direc-
tions and synthesize the resulting images. This is different from merely binocular vision.
A binocular microscope presents the same image to each eye, whereas a properly stereo-
scopic microscope splits the pupil into two halves, presenting one half to each eye.
Since pupil position corresponds to viewing angle, this reproduces the stereo effect.
Splitting the pupil reduces the resolution, but the gain in intuitive understanding is well
worth it.

9.3.9 The Importance of the Pupil Function

Pupil functions don’t get the respect they deserve. The point spread function i(x) of an
optical system is the Fourier transform of the pupil function A(u), and the point spread
function ranks with the étendue as one of the two most important attributes of an imaging
system. The pupil function is the filter that is applied to the spatial frequency spectrum
of the sample to generate the image.

In signal processing, we choose our filter functions very carefully, so as to get the
best measurement, but this is less often done in optics, which is odd since optics are
much more expensive. One reason for it is confusion of two quite different objects,
both called transfer functions, and both giving rise to point spread functions (PSFs). The
confusion has arisen because, for historical reasons, the one less clearly connected to the
electromagnetic field quantities E and B has staked out the high ground.

9.3.10 Coherent Transfer Functions

When we describe the actions of an optical system in terms of the plane wave decompo-
sition of the scalar optical field E, and apply Fourier transform theory to describe how a
sinusoidal component of the field distribution at a sample plane propagates to the image
plane, we are using the coherent transfer function (CTF) of the system. The CTF is the
convolution of the illumination and detection pupil functions, because the amplitude PSF
of the measurement is the product of the illumination and detection PSFs. Most of the
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time, one of the two is far more selective than the other, so the CTF and the broader of
the two pupil functions are often interchangeable.

The CTF is the right description of a translationally invariant phase-sensitive optical
system; this class includes holography setups, scanning heterodyne microscopes, and
phase shifting imaging interferometers, as well as any system producing an aerial image,
such as binoculars. To determine the output of such a system, multiply the Fourier
transform of the sample’s complex reflection coefficient, as a function of position, by
the instrument’s CTF, and take the inverse transform. This is of course mathematically
equivalent to convolving the sample function with the instrument’s 2D amplitude point
spread function. Since the optical phase information is preserved, digital postprocessing
can be used to transform the complex fields in a great variety of ways.

The net effect is that provided you measure both phase and amplitude, on a sufficiently
fine grid and at sufficiently high SNR, you can do with postprocessing anything you could
do on an aerial image with optical elements; this is a remarkable and powerful result.

Example 9.3: Heterodyne Microscope. A heterodyne microscope is basically a hetero-
dyne Michelson interferometer, using an AO deflector as its beamsplitter, and with a
microscope objective in one or both arms. Some versions use separate lenses, and some
send both beams down to the sample through the same lens, as shown in Figure 9.7.
A uniform pupil has an illumination pupil function L = circ((u* + v?)/NA?), which
transforms to an illumination PSF of

Ji(m x)
[0 = : (9.36)
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Figure 9.7. Heterodyne confocal microscope.
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where x = rNA/XL. The coherent detector uses interference with a nominally identical
beam s(x) to produce the AC photocurrent

iac = 2R Re {ff dzxwww;‘}
det

(9.37)
— 2R Re {exp(—i Aot f fd VLo 1s (0] expli A (x, r))dA} ,
et

as in Section 1.5. By the power theorem, this dot product can be computed in the pupil
or the image, or anywhere in between. For our purposes, it is easiest to see what happens
if we compute it at the sample surface. There, the two jinc functions are superimposed
and multiplied by the local complex reflection coefficient 7 of the sample S. Thus the
total complex AC photocurrent is

irc=R / f 1(X)7 (X)s* (x)d>x, (9.38)
sample

which if both beams are unaberrated and focused on x is

7 2
Tac(x) = RA /f f(x/)[]l((”NA/’WX_XD} a2, (9.39)
N |x — x'|NA

so by construction, the amplitude PSF of such a microscope is

2
N x )} . (9.40)

g(x) = [

The CTF of this microscope is the Chinese hat function,

H(w) = ; (cos_l(w) —wy1 — wZ) : (9.41)

whose name makes perfect sense if you look at Figure 9.8 and remember that it’s cylin-
drically symmetric. This function has a cusp at 0 and extends out to @ = 2NA. In talking
about the CTF, we’re subtly sliding into the thin-object Fourier optics approximation,
where a spatial frequency component at v = 2NA/A scatters light coming in at u all the
way to —u, which can still just make it back through the pupil.

The line spread function is

87 NA
52
_ 16NA i (—1)ymg2m
oo Qm + D!NQ2m + 3)!!

[ (x) H,(¢)

(9.42)

m=0
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Figure 9.8. CTFs of a heterodyne interference microscope before and after Fourier postprocessing.

where & = 2kxNA, and H;(x) is the Struve function of order 1 (see Abramowitz and
Stegun). This function has an asymptotic series for large x,

I6NA  _, 8NA(cosé +siné)

L(x) ~ - & NETS

+ 0(¢™*) monotonic + O (6 ~*) oscillatory,
(9.43)

which is a distressingly slow falloff. The slowness is due to the cusp at the origin
and the higher order nondifferentiability at the outer edges. Because the heterodyne
system preserves phase information, this cusp can be removed by digital filtering in
a postprocessing step (see Section 17.7.1). Even a very gentle filter can make a big
difference to the settling behavior; for example, F (1) = cos?(u /NA)/G (1), which turns
the Chinese hat function into a von Hann raised cosine (see Section 17.4.9). This filter
removes the cusp and makes the edges go to 0 quadratically, and as Figures 9.8—-9.10
show, the step response settles at its final value when the uncorrected LSF is still 5%
away. It does this with essentially 0 dB noise gain, so there’s no penalty whatever.

A different filter, which boosts the wings of the transfer function further, can yield
results that approach those expected from a microscope operating at half the wavelength,
provided the noise is sufficiently low'; the 10-90% edge rise going over a A/6 phase step
can be reduced from 0.45A to 0.192, that is, 90 nm for A = 514 nm. (Phase edges are
a bit sharper than pure amplitude ones, since the amplitude dip in the middle sharpens
the edge; the pictures in Figures 9.4 and 9.5 were preternaturally sharp because the step
happened to be close to A/4 tall.) Since an optical image is one of the few real examples
of a band-limited function (because waves with spatial frequency higher than 1/A cannot
propagate to the detector), this is as much as can be achieved in a model-independent
fashion.

fP. C. D. Hobbs and G. S. Kino, Generalizing the confocal microscope via heterodyne interferometry and
digital filtering. J. Microsc. 160(3) 245-264 (December 1990).
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Figure 9.9. Experimental and theoretical phase plots for a heterodyne confocal microscope looking
at an aluminum-on-aluminum step, 80 nm tall, before and after deconvolution.
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Figure 9.10. Theoretical step response of a heterodyne confocal microscope to an amplitude step,
and several deconvolutions.

Example 9.4: Modeling Defocus. Another way to illustrate the difference between
coherent and incoherent optical systems, and the value of coherent postprocessing, is
the compensation of defocus. In an incoherent system, it is impossible to distinguish
between positive and negative defocus, because (apart from aberrations) the difference
is only the sign of the phase shift, which gives rise to no intensity change. Although
there are minor differences in the behavior of lenses depending on the direction of the
defocus, this does not change the basic point.
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In a coherent system, on the other hand (provided that we measure the amplitude and
phase independently, with adequate spatial resolution and signal-to-noise ratio), we can
numerically refocus an image, or focus on any given depth. This can be done as follows:
decompose the beam into plane waves, multiply by exp(—ikz+/1 — u? — v2), where u
and v are the x and y direction cosines as usual, then put it back together. This is a kind
of convolution filter.

The author’s former colleagues, Paul Reinholdtsen and Pierre Khuri-Yakub, used this
idea with a confocal acoustic microscope to remove blurring caused by out-of-focus
structures, by numerically defocusing an in-focus image of the interfering top surface.
Looking at a quarter, they were able to read QUARTER DOLLAR on the back, right
through the coin, by defocusing George Washington and subtracting him out.

Performing the convolution and taking the real part, we can get the (complex) vertical
response of a confocal reflection microscope (where the phase shift is doubled):

NA
i(z) =2m / dwexp (—i2kz\/ 1- a)2> . (9.44)
0

Here we’ve assumed that the pupil function is uniform, so that the obliquity factors in
transmit and receive cancel out exactly, and that the medium is air. With a change of
variable from w = sinf to r = cos 0, this becomes

1
i(z) =27 f exp(—i2kzr')r'dr’. (9.45)
r

This is easily done by partial integration, but the result is a mess. We can get a good
memorable result accurate to about 0.2% up to NA = 0.5 by setting the factor of r’
outside the exponent to 1 and computing the envelope and carrier:

i(z) = 27 (1 — r)sinc(rz/A) exp(—i2krz), (9.46)

that is, the amplitude response is a sinc function and the phase shift is not 2kz but is
reduced by a factor [1 — (NA)?]!/2. The exact result shows that the phase slope reduction
reaches a factor of 2 at NA = 1.

9.3.11 Optical Transfer Functions

The CTF is not the most commonly encountered transfer function in the literature. The
more usual optical transfer function (OTF) is another beast altogether, and it’s impor-
tant to keep the distinction crystal clear. The OTF predicts the infensity distribution
of the image based on that of the sample, with certain assumptions about the spatial
coherence of the illuminator, i.e., the statistical phase relationships between the various
Fourier components. There is no 1:1 correspondence to the propagation of plane wave
components through the optical system. As we’ll see, the OTF isn’t a proper transfer
function.
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The intensity” of the beam is ¥ /* cos 6. Since the propagation of A to the image
plane is governed by the CTF H, the autocorrelation theorem gives us the OTF O:

O(u,v) = H(u,v)* H(u, v). (9.47)

The OTF for an ideal system whose pupil function is circ[(u? + v?)/(NA)?] is our old
friend the Chinese hat; the circ function is real and symmetric, so its transform is real
and symmetric, and therefore its self-convolution equals its autocorrelation. (This is only
true in focus, of course.)

The OTF and CTF each presuppose a concept of spatial frequency, but it must be
understood that these two concepts do not map into each other in a simple way. Intensity
is related to the squared modulus of the field variables; this nonlinearity results in the
field amplitude spatial frequencies of the CTF undergoing large-scale intermodulation
and distortion in the process of becoming the optical intensity spatial frequencies of the
OTF. In particular, the width of the OTF is twice that of the CTF, but that does not
imply the ability to resolve objects half the size. In discussing the OTF, we still use
the variable names u# and v, but do be aware that they no longer correspond directly to
pupil plane coordinates, nor to the direction cosines of the plane wave components of .
(This is another example of a problem that’s endemic in optics: reusing nomenclature in
a confusing way.)

Being autocorrelations, optical transfer functions always droop at high spatial fre-
quencies, and since intensity is nonnegative, OTFs must always have a maximum at
zero. Interestingly, the OTF can go negative at intermediate values of spatial frequency,
leading to contrast inversion for objects with periodicities falling in that region, an effect
called spurious resolution. The OTF is purely real for symmetric optical systems but can
exhibit phase shifts in systems lacking an axis of symmetry.

The justification for centering on the OTF is that, with thermal light, the phases of
image points separated by more than a couple of spot diameters are uncorrelated, so there
is no utility in keeping the phase information. This is of course fine if an in-focus image
is being projected on film or an intensity detector, which is intrinsically insensitive to
optical phase, but is inadequate for an aerial image or a phase-preserving system like a
phase shifting interferometer or a laser heterodyne system, where the phase information
still exists and can be very important, not least in fixing the imperfections of the image.

Perhaps the most intuitive way of capturing the distinction is that the OTF is not
changed by putting a ground-glass screen at the image, whereas the CTF has its phase
scrambled. Classical lens and optical systems designers use the OTF as one of their
primary tools, which explains some of the difficulty encountered by workers in the
different fields when they talk to each other.

Aside: Nonuniqueness of the Intensity Pattern. Since the relative phases of the
plane waves in the CTF are lost when going to the OTF, any two patterns whose fields
differ only in phase will produce the same intensity pattern, for example, positive and
negative defocus.

TWell, irradiance, to be exact—the author resists the Humpty-Dumpty approach to radiometric nomenclature
that goes around redefining preexisting terms to mean something else, in this case intensity being used for total
power per steradian through some surface.
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9.3.12 Shortcomings of the OTF Concept

The classical formulation of the optical transfer function is not a good analogue to transfer
functions as used in circuit theory, ordinary differential equations, and so forth, although
it might superficially look like it.

The behavior of fields is much more intuitive than that of image irradiance, because
the fields exist throughout the optical system, whereas image irradiance doesn’t. There
are other ways in which the OTF isn’t really a transfer function, the most important one
being that you can’t compute the OTF of two systems in cascade by simply multiplying
the individual OTFs.

For example, consider a 1:1 relay system consisting of two lenses of focal length f,
spaced 4 f apart, as in Figure 12.1a. With an object at —2 f from the first lens, there will
be a good image at the center of the system and another one at 2 f past the second lens.
If we choose the reference plane for the individual OTFs to be the center, everything
works reasonably well. On the other hand, if we choose it to be off center, the image
at that plane will be out of focus, leading to an ugly OTF, falling off very rapidly from
zero spatial frequency. The second lens will also be defocused, leading to another ugly
OTF, so their product will be ugly squared. This is exactly the right answer, provided
we put a diffuser at the reference plane.

In real life, of course, an odd choice of reference plane doesn’t affect the system
operation at all—the defocus of the first half is undone by the defocus of the second,
leading to a good image. The OTF gets this wrong, but the CTF gets it right—the phase
curvatures of the two CTFs compensate correctly, and you get the right answer.

Lest anyone say that this is just silly, that nobody would set up a calculation that
way, let’s go a bit deeper into the problem. A symmetric optical system such as this 1:1
relay has no odd-order wave aberrations, because the second half’s aberrations cancel
out the first half’s. (The even orders add.) Computing the overall OTF by multiplying
the two half-OTFs will get this wrong, because the phase information is lost, so all the
aberrations add in RMS instead of directly. Odd-order contributions will be overestimated,
and even-order ones underestimated. Yet this weird OTF thing is called “the transfer
function” and tossed about as though it had physical meaning. Beware.

9.3.13 Modulation Transfer Function

The modulation transfer function (MTF) is the magnitude of the OTF, normalized to
unity at zero spatial frequency, and is most commonly used to describe the resolution
performance of lenses, while not considering their photon efficiency.

9.3.14 Cascading Optical Systems

Under appropriate assumptions, when two optical systems are cascaded, their transfer
functions are multiplied to get the transfer function of the cascade. If there is a diffuser,
image intensifier, television system, or other phase-randomizing device between the two,
use the OTF or MTF. Otherwise, use the CTF.

9.3.15 Which Transfer Function Should | Use?

This depends on the properties of the illuminator, and to a lesser degree on those of
the detector. The assumptions leading to the derivation of the OTF are: an illuminator
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with very low spatial coherence, and a detector that is sensitive only to intensity, such
as a television camera or photodiode, with no phase reference (as in an interferometer).
The resulting near-total loss of phase information severely limits the opportunities to
gain from postprocessing, although the work of Fienup and others has demonstrated that
some phase information can often be retrieved.

Example 9.5: OTF of an Ideal CCD Camera. As an example of the use of the OTF,
consider a CCD camera with square pixels of pitch §, a 100% fill factor, QE = 1 every-
where, and negligible bleed of one pixel into its neighbor. This is a spatial analogue of
the sampled-data systems we’ll encounter in Section 17.4.3, so although the detector is
not shift invariant, we lose no information about the true OTF as long as the pixel pitch
obeys the Nyquist criterion, and it is still sensible to talk about the OTF and MTF of
such a system. The detector sensitivity pattern is rect(x/§) rect(y/8), which is unaltered
by squaring. Since u and x /A are the conjugate variables, the detector CTF is the product
of x and y sinc functions scaled by §/A, and its OTF is the same, so the OTF of the
lens/CCD system is

§\? b b
OTF.o, (it, v) = OTFiens (11, v) (X) sinc (”7) sinc (%) . (9.48)

(We couldn’t use this detector coherently without an LO beam, of course, so we can
think of the spatial filtering action corresponding to this CTF as occurring on a Gaussian
surface just above the detector.)

9.4 ABERRATIONS

A lens is often thought of as imaging an object plane on an image plane, but really it
images a volume into another volume. A perfect imaging system would image every
point in its object space to a corresponding point in its image space. The fidelity of the
image would be limited only by diffraction, and in the transverse direction, it would
be perfectly faithful geometrically as well. Squares would come out square (no dis-
tortion or anamorphic errors), and a flat object would give rise to a flat image (no
field curvature), but unless the magnification was unity, the longitudinal magnification
would nonetheless differ from the transverse magnification. Paraxial theory, whether the
ray model (as in ABCD matrices) or the field model, always predicts perfect imag-
ing, apart from defocus. We therefore expect the aberrations to turn up in the higher
order terms.

Unfortunately, the algebra gets ugly in a hurry when we’re dealing with exact ray
tracing or scalar wave propagation; there are lots of square roots. Good quality optical
systems ought to have phase aberrations that are small compared to the total phase delay
through the system, so we anticipate that a power series expansion will yield useful
simplifications. This power series is really not that well defined, because higher orders
yield higher spatial frequency information that will eventually be corrupted by edge
diffraction and vignetting, so that the aberration series is really a high-order polynomial
plus some hard-to-treat residual, which we will assume is small.

"This is rather like the distortion polynomial of Section 13.5.
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Nobody uses high-order analytical aberration theory anymore. Lens designers use the
low-order terms as conveniences, but rely on computer ray tracing and (manually guided)
numerical optimization of an intelligently chosen starting configuration. For the system
designer, high-order aberrations are of peripheral concern as well.

Aberrations are most obtrusive in wide field, high-NA optics, such as lithographic
lenses and fast telescopes. Lots of instruments use lenses like that, but they are seldom
fully custom designs, because the engineering and tooling costs would be astronomical.
Thus the heroic lens design is someone else’s problem—the rest of us mostly live in
the low-NA, narrow field region behind those fancy lenses. Instrument designers need
to know how aberrations propagate, what produces them, and how to avoid doing it.
For this use, the lowest order aberrations are generally enough. For the same reason,
we’ll ignore the pure ray picture entirely and center on phase shifts of the plane wave
components of a focused spot at an arbitrary field position.

9.4.1 Aberration Nomenclature

Aberration theory is somewhat separate from the rest of optics, because it is primarily
used by lens designers, who have been doing much the same sort of work for 100 years,
in sharp distinction to workers in most of the rest of optics. This is not to disparage the
great strides lens design has made in that time, but it remains true that the formalism of
classical aberration theory is not clearly related to the rest of the optical world, and a
number of the terms used have different meanings than elsewhere. For example, to most
practical optics folk, defocus means that the focal plane is offset from where it should be.
In the paraxial approximation, a defocus d translates to a quadratic phase (time delay)

across the pupil,
nd u?
Algefocus ~ T 1——, (949)

whereas the real phase delay is k;z, which in time delay terms is

d d ——
Algefocus = e cosf = = 1 —u?, (9.50)
C C

which of course contains all even orders in u.

In wave aberration theory, defocus means the quadratic expression (9.49), even at
large NA. A pure focus shift in a large-NA system thus comes out as aberrations of all
even orders, including spherical aberration and so on, even though a twist of the focus
knob will restore the image completely. Those of us who use physical intuition heavily
must guard against being led astray by this sort of thing.

Aberrations with the same name in the two different pictures do not correspond
uniquely to one another; we’ve already seen the problem with defocus, but it also exists
in other places. The names of aberrations have only mnemonic value—once again, if
you expect everything to make sense together, you’ll wind up chasing your tail.

As a way of connecting aberration theory with ordinary experience, let’s calculate
the effects of introducing a plane-parallel slab of dielectric into a perfect, converging
spherical wave of limited NA.
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Figure 9.11. A plane-parallel slab of dielectric introduced into a plane wave.

9.4.2 Aberrations of Windows

Figure 9.11 shows the k vector of a plane wave incident on a plane-parallel slab of
dielectric constant n,. The refracted wave travels farther, and through a different index
material. In the wave picture, this one is easy; the phase shift is just (k;» — k;1)d. Let’s use
the hybrid picture, where we calculate the phase difference along the ray paths. Inspection
of the figure shows that the change in the propagation time due to the presence of the
slab is

d
At = —secOy(ny, —njcos(b) — 6,)), (9.51)
c

since a translation perpendicular to k has no effect on a plane wave. (If this isn’t obvious,
it’s worth spending a bit of time on. This is a move that the hybrid picture relies on a
good deal.) Without loss of generality, if the slab’s faces are parallel to the (x, y) plane,
and the incident plane wave has direction cosines (u, 0), then Snell’s law requires that
uy = njuy/ny (we’ve used u; = sinfy). Writing (9.51) in terms of u;, we get

2
niuy 2
— — 1-— , 9.52
( " ) niy/1—uj (9.52)

which (comfortingly enough) is the same as the wave result. This obviously has terms
of all even orders in u;. Let’s look at the first three orders, Afy to Aty:

d du? duf
Aty = Sy =), Aty = S5y — w2 /n), Aty = S5y —ni/nd)  9.53)
c c 2 c 8

The higher order terms in the series expansion are equally simple, and all have the
same form. Specializing to a 6 mm thick plate and BK7 glass (ny; = 1.517), we get the
result shown in Figure 9.12. The bulk of this is obviously caused by the zero-order time
delay and the focus shift, but considering that one cycle of green light takes only 1.8 fs
even the residuals may be very large (the right-hand axis goes up to 12,000 waves). We
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Figure 9.12. Differential time delay ¢ suffered by a plane wave on passing through the dielectric
plate of Figure 9.10, together with approximations of orders O, 2, and 4. The curves at left are
aberration residuals up to orders 2 and 4.

find out the effects of the aberrations on our nice focused beam by using the delay as
a function of u and v to construct a phase factor to multiply our pupil function A, and
then using (9.32) to get the new point spread function.

As we’ve already discussed, the u% term is usually called simply “defocus,” though
Figure 9.12 shows up the clear distinction between this and real defocus; to keep things
clear, we’ll call the quadratic term paraxial defocus. The term in u‘lt is called primary
spherical aberration. Spherical aberration is independent of field position, and so it
occurs even for an on-axis beam.

The curves on the left show the aberrations of fourth order and greater, and of sixth
order and greater, in units of waves (i.e., cycles) for 600 THz (500 nm) light, assuming
that the pupil function of the beam is symmetric around # = 0. If that isn’t true, for
example, a low-NA beam coming in at a big field angle, the true aberration is v times
the spread of time delays across the pupil function, minus the best-fit defocus.

9.4.3 Broken Symmetry and Oblique Aberrations

Other aberrations, such as astigmatism and coma, show up as soon as we run a finite
field angle, that is, move the center of the pupil function distribution away from (0, 0).
In an axisymmetric system like this plate or most lenses, these oblique aberrations are
purely an effect of a shift of origin. (If the plate had some wedge angle, that would no
longer be true.)
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A residual effect of this broken symmetry is that if we move the origin to (ug, 0)
(which loses us no generality), the pupil function is an even function of v. Thus the
aberrations of a really symmetric system depend only on even powers of v, and by
appropriate rearrangement of terms, that means they depend only on the cosine of the
azimuthal angle 6 (1 = pcosf, v = psin6f). Manufacturing and assembly errors are in
general asymmetrical and are frequently of the same order as the design residuals, so
don’t make too much of it.

If we move the center of the pupil function to (ug, 0), we’re calculating the fields
at a point x = (uo f/(1 — u%)l/z, 0, f), where L is the z distance from the pupil to the
focus. For simplicity, we’ll call this x coordinate the height /. The aberration polynomial
coefficients get a tiny bit more complicated,

Aty = g(a —b), (9.54)
d

Al = —Zn(oza —yb), (9.55)

Aty = 2 (P + @D — (8 + y)b] + vPlafa — o), (9.56)

Aty = —% ("’[Bep + o)a — (8y8 + y)b] + nv[8aBa — 8ysb]), (9.57)

and so on, where u = ug+ 1, g = 1/(n%/n% — u%), oa=uyB,8=1/(1— u(z)), Yy = ugpd,
a=n;/B"?, and b = 1/8'/2. The coefficients of n'v/ are the aberration amplitudes.

9.4.4 Stop Position Dependence

One good way of reducing the effect of badly aberrated edge rays is to block them with
a strategically placed stop. This may seem wasteful of light, but those rays weren’t doing
our measurement any good anyway, so they’re no loss. This is one example of a case
where the stops may be fairly far from the Fourier transform plane.

9.5 REPRESENTING ABERRATIONS

The standard method of representing the aberration coefficients of a wavefront is the
wave aberration polynomial "

o0
W= " Wainominah™ p™" " cos" ¢, (9.58)

I,m,n=0

where W is the optical path difference in meters (converted to n = 1 as usual). Think of
kW as the (unwrapped) phase of A. Apart from the fact that the practical upper limit of
this summation is very finite, it’s moderately useful, although more mysterious looking
in this form. The coefficients all have names up to order 6 or so (the order of a term

TWarren J. Smith, Optical design, Chap. 2 in J.S. Accetta and D.L. Shumaker, The Infrared and Electro-Optical
Systems Handbook, Vol. 3.
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TABLE 9.1. Seidel Aberrations

Piston Wooo

Tilt Wii1hp cos 0
(Paraxial) defocus W020p2
Spherical Wosop*

Coma Wiz 03 cos 6
Astigmatism Wanoh? p2 cos2 0
Field curvature Wanoh? p?
Distortion Wi11h3p cos@

is the sum of the exponents of p and %, not cos #), which are listed up to order 4 in
Table 9.1. Of the ones we haven’t talked about, piston is just an overall phase shift,
which we often don’t care about, and tilt corresponds to a shift in the focal position.

The ray model came first. Ray aberrations are quoted as position errors in the focal
plane; because the ray travels along VS, the same term shows up in one lower order
in the ray model—astigmatism is a fourth-order wave aberration but a third-order ray
aberration, which can cause confusion sometimes. We saw in Section 9.2.3 that the local
direction of propagation is parallel to V®. The ray intercept error is

AX = —EV(OPL). (9.59)
n

The most common way to quote aberration contributions is in peak-to-peak waves over
the full diameter of the pupil.

9.5.1 Seidel Aberrations

Wave aberrations up to order 4 are known as Seidel aberrations; their pupil functions are
shown in Figure 9.13 and their functional forms in Table 9.1. Looking at the spherical
aberration and astigmatism profiles, it is clear that the RMS wavefront error could be
significantly reduced by compensation, that is, adding a bit of tilt to the coma and a bit
of defocus to the spherical aberration so as to minimize (A¢). Compensated waveforms
are shown in the bottom row of Figure 9.13.

9.5.2 Aberrations of Beams

Frequently in instruments we want to talk about the aberrations of a fixed laser beam, so
it doesn’t make much sense to talk about dependence on field angle or image height. In
that case, the only relevant terms up to fourth order are paraxial defocus p?, astigmatism
p? cos?(6 — 6y), spherical aberration p*, and coma p3 cos(6 — ;). Since in general no
symmetry constraint applies, the 6; can be anything.

Aside: Zernike Circle Polynomials and Measurements. The Zernike polynomials
are an orthogonal basis set for representing the optical phase in a circular pupil. This
sounds like a great way of expressing measurement results—decomposing a wavefront
into orthogonal polynomials is computationally cheap and well conditioned, and all.
Unfortunately, their practical utility is zilch. Due to vignetting and beam nonuniformity,
our pupils are almost never exactly circular or uniformly illuminated, and errors in the
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Figure 9.13. Seidel aberrations.

boundary conditions destroy the orthogonality. Defining the “true” Zernike coefficients
is especially problematical when our measuring interferometer is intentionally using an
elliptical clipping boundary, and perhaps choosing a different ellipse for each run. Even
if the pupil stays circular, Zernikes are only obliquely connected to the beam quality
measures we care about (e.g., defocus in diopters).

The power series coefficients stay reasonably still even as the bounding ellipse
changes, and are pretty well connected to what we care about, so use that up to fourth
order in the wavefront. If that isn’t accurate enough, do the calculation numerically.

9.5.3 Chromatic Aberrations

Different wavelengths see different values of n, and a time delay Ar produces differ-
ent phase shifts. Thus all the coefficients of the aberration polynomial are wavelength
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dependent. Changes in focal length with A are longitudinal chromatic aberration, changes
in magnification are lateral chromatic aberration or lateral color, and changes in the
primary spherical term are spherochromatism. Few of these things are under our control
as system designers, which isn’t to say they aren’t important.

9.5.4 Strehl Ratio

The Strehl ratio is the ratio of the central intensity of a focused spot to what it would be
with the same amplitude distribution but zero phase error,

2
| JJ A, v)dudv

R ~
S |A du dv

(9.60)

The Schwarz inequality guarantees that this ratio achieves 1 only when the phase
error is indeed zero, and never exceeds that value. A Strehl ratio of 0.8 corresponds
to Rayleigh’s A/4 criterion for a system that is diffraction limited.” When building
focused-beam instruments, we frequently find that the electrical signal power goes as
the square of the Strehl ratio, which is a convenient way of including aberration toler-
ances in our photon budgets. A useful approximation for the Strehl ratio is Marechal’s
formula,

—(A¢?)

g7 9.61)

R ~ exp
where (A¢?) is the mean square phase error in rad® (remember to weight the mean square
calculation by the intensity and area, and normalize correctly). If you prefer to use the
phase p in waves (i.e., cycles), it’s exp(— p?/2), which is pretty easy to remember.

The Strehl ratio suffers from the same problem as equivalent width; if the peak is
shifted from the origin, the ratio may come out very small, even for a good beam. Thus
we often want to calculate the Strehl ratio after the tilt contribution (which moves the
focus sideways) has been removed. Also, it can give some odd results with multiple
transverse mode beams—because the different spatial modes have different frequencies,
DC intensity measurements like Strehl ratio miss the rapidly moving fringe pattern in
the beam, and so underestimate the far-field divergence. The Strehl ratio is an excellent
quality measure for good quality beams, where the intensity profile has one main peak;
for uglier ones, consider using Siegman’s M? instead.

Example 9.6: ISICL Signal-to-Noise Calculation. The Strehl ratio shows up by other
names in other fields. In antenna theory, it is called the phase efficiency, which is the ratio
of the on-axis detected signal to that of a perfectly figured antenna, neglecting loss. Strehl
ratio thus shows up as a multiplicative factor on the detected signal from focused-beam
instruments. The ISICL sensor of Example 1.12 uses coherent detection with a Gaussian
beam. Referring to Figure 1.15, a particle with differential scattering cross section do/d 2
crossing near the focus produces a scattered photon flux per steradian

d 21 Pr(NAT)2 d
n _ 2wPr(NAp)“do (9.62)
dQ e dQ

TStrictly speaking, the 0.8 corresponds to 0.25 wave of uncompensated spherical aberration.
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where Ry and NA7 are the transmit beam’s Strehl ratio and numerical aperture. When
coherently detected by a similar LO beam, the detection NA is 7(NAR)*Ry (the factor
of Ry accounts for the dephased (aberrated) part of the LO power, which goes into the
shot noise but not into the coherently detected signal). Doppler shift makes this an AC
measurement, so from Section 1.5.2, the 1 Hz SNR is equal to the number of detected
signal photoelectrons per second, which is

212 Pr(NA7)2(NAR)? d
_2mn 7 (NAT)~(NAR) —URTRR, 9.63)
Mhc 1749

SNR =n

where 7 is the detector’s quantum efficiency.

The detected SNR goes as the product of the Strehl ratios of the transmit and LO
beams. This provides a natural connection between aberrations and signal level (and
hence SNR), which is why the Strehl ratio is so useful for instrument designers.

9.6 OPTICAL DESIGN ADVICE

Many books have been written on lens design, and lots of software exists to help. That’s
not what we’re talking about now, and is in fact beyond our scope. Optical design (in
the restricted sense used here) is concerned with sticking lenses and other parts together
to get the desired result. An analogy from electronics is IC design versus application
circuit design, with the lens being like the IC: most of the time you use standard ones,
but occasionally you have to do a custom one; it will be a better match, but will cost
something to design and will usually be more expensive in production unless you have
gigantic volumes.

Computerized exact ray tracing is not usually necessary in instrument design, although
if you have easy-to-use software for it, you might as well—it doesn’t make anything
worse, after all. On the other hand, we often don’t have the full optical prescription for
the lenses, so exactness doesn’t buy us a lot. Thick-lens paraxial ray optics is better than
good enough for layout, and our hybrid wave optics model plus some simple aberration
theory does the job of calculating image or beam quality, signal levels, and SNR.

If necessary, we can use ray tracing or numerical wavefront simulation to dial in the
design once we’ve arrived at a close approximation, but it is needed surprisingly seldom
since the fancy stuff is usually done at very low NA, where life is a lot easier. Apart
from etalon fringes, using mostly collimated beams (or parallel light in imaging systems)
makes it possible to add and remove components freely, with only minor effects on
optical quality.

9.6.1 Keep Your Eye on the Final Output

In Section 1.7.1, we used an expression for the detected photocurrent as the optical
system output, and that remains the right thing to do when aberrations and finite aperture
systems are considered—you just use the real pupil function instead of the paraxial one,
and pay attention to obliquity factors and the Strehl ratio. It’s an excellent way to know
just when our treatment of system aberrations is losing contact with instrument-building
reality. As we saw in Example 9.6, it leads to a natural interest in the Strehl ratio, which
appears in the photocurrent and SNR calculations. There are other things that matter
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besides the photocurrent (e.g., geometrical distortion), but if you don’t see how to relate
the figure of merit under discussion to the actual instrument performance, find another
way of describing it until you can. Lens designers produce lenses for a living, and we
build electro-optical systems.

9.6.2 Combining Aberration Contributions

An optical system is made up of a series of imperfect elements, each contributing its
own aberrations. In order to combine them, we note that all the pupils in the system
are images of each other, and so the pupil functions multiply together. The exit pupil
of each element is imaged at the output of the system by the (ideal) imaging action of
all subsequent elements, and the resulting pupil functions multiplied together to get the
total pupil function of the system. Watch out for magnification differences—those pupils
won’t all be the same size, and the smallest one wins.

9.7 PRACTICAL APPLICATIONS

9.7.1 Spatial Filtering— How and Why

Spatial filtering is the deliberate modification or removal of some plane wave components
from a beam, and is completely analogous to the ordinary electronic filtering performed
in a radio. It is normally done by using a lens to Fourier transform the beam, inserting
at the focal plane a mask that is transparent in some places and opaque in others (such
as a slit or a pinhole), and then transforming back with a second lens. It is widely used
for cleaning up beams and for removing artifacts due to periodic structures in a sample
(e.g., IC lines).

Spatial filtering using a pinhole can make a uniform beam from a Gaussian one but
will waste around 75% of the light doing it. The smallness of the pinhole required for a
good result with a given NA may be surprising—the first Airy null is way too big (see
Example 9.9).

Spatial filters are not as widely used as one might expect, based on the analogy to
electrical filters. They require complex mechanical parts, which is a partial explanation.
The real trouble is tweakiness: they are difficult to align, easy to misalign, and sensitive
to mechanical and thermal drifts; if ordinary translation stages are used, an expensive
and very labor-intensive device results. These problems can be reduced by clever design,
for example, by using a laser or an in situ photographic process (with a fixed optical
system) to build the mask right inside the filter. If you need a pinhole spatial filter, use
a big pinhole (>20 pum diameter in the visible) and correspondingly low NA to get the
best stability. One other problem is that they nearly all have sharp edges, which isn’t
usually optimal.

9.7.2 How to Clean Up Beams

Laser beams are frequently rotten. Most gas lasers produce beams of reasonable quality,
but these are often surrounded by multiple reflections, scattered light, and spontaneous
emission. Diode lasers are worse; their beams suffer from astigmatism and are highly
asymmetric. We may need to free these beams of their bad associations in order to
make them useful, or to change their spatial distributions to something more convenient.
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This is done through spatial filtering and the use of apertures (and occasionally special
elements such as anamorphic prism pairs). Since both of these operations are performed
by passing the beam through holes of various sizes, the distinction is somewhat artificial
but is nonetheless useful: apertures are used on the beam before focusing, and spatial
filters in the Fourier transform plane. A seat-of-the-pants test is that if it requires a fine
screw to adjust, it’s a spatial filter.

Putting an aperture some way out in the wings of the beam (say, four times the
1/e* diameter) has little effect on its propagation characteristics, so use them freely to
reduce artifacts. If the artifacts are close to the beam axis, it may be helpful to let the
beam propagate for some distance before applying the aperture; a lens may be helpful
in reducing the optical path length this might otherwise require (here is where it shades
into spatial filtering). Appropriately placed apertures can turn a uniform beam into a
good Gaussian beam, or chop off the heavily aberrated wings of an uncorrected diode
laser beam.

Example 9.7: How Small Do I Have to Make My Aperture? Slits and pinholes are
frequently used to render an instrument insensitive to the direction from which incident
light originates. A monochromator (see Example 7.1) uses a slit to ensure that the light
incident on its grating arrives from one direction only; this maximizes its spectral selec-
tivity. There’s obviously a trade-off between selectivity and optical throughput; because
different positions across the slit translate to different incidence angles on the grating, a
wider slit translates directly into lower spectral resolution.

More subtly, with a wide slit a change in the position or direction of the incoming
light can cause apparent spectral shifts. This is because the slit doesn’t obliterate the
spatial pattern of the incoming light, it just clips it at the slit edges, and so broadens its
angular spectrum. If the slit is made small enough, it can’t shift far laterally, and we
expect that the width of the diffraction pattern will swamp any likely angular change
from the incoming light. On the other hand, using a slit that narrow can make things
pretty dim. Exactly how narrow does it have to be?

As we saw in Section 5.7.9, scatterers tend to produce patterns that are aligned with
the incident light, but smeared out in angle. The same is true of slits and pinholes; in
the Fourier optics approximation, the (amplitude) angular spectrum of the incident light
is convolved with the Fourier transform of the aperture’s transmission coefficient.

If we illuminate the slit at an incidence angle 6, the main lobe of the sinc function
is aligned with the k vector of the incoming light, and the intensity along the normal
to the slit will decrease as 6 increases. Since x/A and u are conjugate variables, if we
require that a change of 4§ radians cause a fractional decrease of less than ¢ in the
central intensity of the diffraction pattern, the slit width w must obey

. 6¢
wsind </ —, (9.64)
Vg

so that for a relatively modest requirement, for example, a shift of less than 5% from
a £10° rotation, w < 2.25x. It is difficult to use slits this small, but not impossible.
Improving on this, such as requiring a 1% shift from a +30° rotation, is impractical, as
it requires a slit very small compared with a wavelength.

Similar considerations govern the sensitivity to lateral motion of a pinhole in a focused
beam. The moral of this story is that although spatial filters can reduce the sensitiv-
ity of a measurement to angular shifts of illumination, a complete cure is not to be
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TABLE 9.2. Effects on a Gaussian Beam of a Circular
Aperture of Radius r Placed at the Beam Waist

rlw Al (nom) Whest Al (best)
0.5 0.66 2.72 0.027
1.0 0.30 1.47 0.022
1.5 0.099 1.13 0.014
2.0 0.022 1.0245 0.0055
2.5 0.0028 1.003 0.0014
3.0 0.0002 1.0002 0.0001

found here. Single-mode fibers are dramatically better, because they control the direction
from which the light hits the pinhole (see Section 8.2.2). Unfortunately, they’ll often
make your light source dramatically noisier as well, by turning FM noise into AM; see
Section 8.5.13.

Example 9.8: How Small Can I Make My Aperture? On the other hand, if we have a
beam that has artifacts out in its wings, such as most gas laser beams, we would like to
make the aperture as small as possible without causing objectionable diffraction rings. If
the beam is Gaussian, the ripple amplitude is very sensitive to slight vignetting. Table 9.2
gives the maximum absolute deviation A/ from both the nominal and best-fit Gaussian
beam, in the transform plane, due to apertures of different radius placed at the beam
waist. Values have been normalized to a central intensity of 1.0.

Example 9.9: Using an Aperture to Make a Nearly Gaussian Beam. Let’s consider
the use of an aperture in the pupil to make a uniform beam into a reasonable approx-
imation to a Gaussian beam. Although a uniform beam exhibits an extensive set of
diffraction rings, an appropriately placed aperture can greatly reduce their amplitude. A
uniform beam of amplitude E( and radius a at a wavelength A gives rise to a far-field
Airy pattern whose first null is at 6 = 0.61A/a. If the beam is Fourier transformed
by a lens of focal length f, so that the numerical aperture NA = a/f, the pattern is
given by

E(r) = Eok NAZjinc(krNA). (9.65)

Figure 9.14 shows the result of truncating this pattern with a circular aperture at the
first Airy null, and recollimating with a second lens. Here the radius of the original
uniform beam was 100 um and the wavelength was 530 nm. The Gaussian shown has
a 1/e? (intensity) radius of 95 wm, and the sidelobes are below 1 part in 10 of the
peak intensity. Only about 15% of the light is lost. Note that the peak intensity is twice
that of the original uniform beam. Contrary to appearances, the total beam power has
gone down—the high peak intensity covers a very small area since it’s at the center.
A graded neutral density filter, which is the competing technique, cannot increase the
central value, so that it is limited to at most half this efficiency, and far less if we expect
the Gaussian to drop to nearly zero before the edge of the beam is reached; on the other
hand, it requires no lenses. (See Figure 9.15.)
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Figure 9.14. Turning a uniform beam into a nearly Gaussian one with a pinhole of the same radius
as the first Airy null.
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Figure 9.15. The data of Figure 9.14 on an expanded scale.

9.7.3 Dust Doughnuts

In general, a bit of dust on a lens is no big deal. The exception is when the dusty surface
is near a focus, in which case dust is extremely objectionable, leading to strong shadows
called dust doughnuts. (The shadows are annular in shape in a Cassegrain telescope,
hence the name.) How far out of focus does the dust have to be?

Assuming the dust is less than 100 um in diameter, and that a 1% intensity error is
acceptable, a focused spot has to be at least 1 mm in diameter at the dirty surface, so
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the required defocus is

1 mm
18 Zdefocus | z m (966)

9.8 ILLUMINATORS

This discussion is indebted to an SPIE short course, “Illumination for Optical Inspection,”
by Douglas S. Goodman.

9.8.1 Flying-Spot Systems

A scanning laser microscope is an example of a flying-spot system, as opposed to a
full-field or staring system, in which a larger area is imaged at once. The first flying-spot
optical systems in the 1950s used an illuminated point on a cathode ray tube as the light
source, and a PMT as the detector because the spot was so dim. That at least had the
advantage of speed and no moving parts. Flying-spot systems are simple to analyze,
because their PSFs are the product of the illumination and detection spots (whether
amplitude or intensity is the appropriate description), and there is no problem with speckle
or scattered light smearing out the image.

9.8.2 Direction Cosine Space

Full-field systems require a bit more work to specify accurately. We’re usually using
thermal light from a bulb of some sort, so the illumination is coming from some rea-
sonably wide range in (u,v). Figure 9.16 shows a sample region illuminated by a cone
of light, which is plotted on a large sphere (much bigger than the sample region of
interest) and then projected down into the (x,y) plane. Since the exact radius R is of
no significance, we normalize it out and plot the illumination in terms of u and v. Due
to the curvature of the spherical surface, illuminated patches lying near the horizon are
strongly foreshortened in area (by a factor of cos 6, where 6 is the polar angle). This is
quite useful actually, since the flux passing into the surface is reduced by the same factor
due to the spreading out of the obliquely illuminated patch (equivalently, the apparent
source area seen by any one point is reduced by the cosine). Figure 9.17 shows bright-
and dark-field systems, with oblique and concentric illumination.

iR

Cone of lllumination

Sphere
“at infinity”

Figure 9.16. Direction cosine space.
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Figure 9.17. The general type of illumination is determined by the overlap of the illumination and
detection patterns in u,v space.

9.8.3 Bright and Dark Fields

Illuminators are divided into bright- and dark-field types, depending on whether the image
of a featureless sample (e.g., a mirror in reflection or a glass plate in transmission) is
bright or dark; this is equivalent to whether the illuminator is directly visible in the image.
In direction cosine space, a bright-field system has illumination and collection patterns
that substantially overlap, whereas they miss each other completely in a dark-field setup.
It is possible to work in intermediate states, generically called dim field.

Dark-field images consist entirely of scattered light, so that highly scattering areas
such as dust particles appear bright on a dark background. Bright-field ones see darker
areas where light has been absorbed or scattered so far as to miss the collection lens.
This means that increasing the NA tends to wash out the contrast in bright field—all
that scattered light is collected and reassembled in the image, so only the absorption
contrast is left. Dark-field illumination shows up phase objects and weak scatterers better
than bright field, but the image intensity is quadratic in the phase shift ¢, so it is not
especially sensitive at small ¢. In Sections 1.5 and 10.3.5 we discuss ways to get higher
sensitivity for small signals.

9.8.4 Flashlight lllumination

The first crack at an illumination system is often to take a fiber bundle illuminator and
point it at the sample, keeping it away from the rest of the optical system. This produces
a kind of oblique dark-field illumination that varies in angular spectrum and intensity
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across the sample. If the sample is diffuse (e.g., white paper), or quantitative results are
unnecessary, this may work fine—and it’s certainly quick.

9.8.5 Critical lllumination

Of more thoughtful illumination strategies, the simplest is critical illumination: just image
the source down onto the sample. Any variations in the source appear directly in the
image, so the source must be very uniform. A more subtle problem is that critical
illumination is generally nonstationary; that is, the illumination diagram is different at
different points in the field of view. This is because the image of the bulb radiates in all
directions, and hence its angular spectrum will be vignetted in the pupil of the imaging
lens, at least for points sufficiently far off-axis. This vignetting can be so severe that the
edges of the field change from bright to dark field, as the specular reflection misses the
collection lens completely.

9.8.6 Kohler lllumination

Kohler illumination overcomes the source nonuniformity problem by putting the sample
at the Fourier transform plane of the condenser, or equivalently by imaging the source on
the entrance pupil of the collecting lens. This strategy makes the illumination conditions
stationary across the field (i.e., it doesn’t change from bright to dark field the way
critical illumination can), because all the unscattered light makes it through the pupil of
the imaging lens without being vignetted. '

Kohler illumination tends to keep the spatial frequency bandwidth more nearly con-
stant; the center of the light cone from each point goes through the center of the pupil.
Vignetting will reduce the spatial frequency bandwidth at the edges but won’t make the
illumination change from bright to dark field across the sample, as can happen with
critical illumination.

9.8.7 Testing llluminators

Douglas Goodman suggests using the ball-bearing test. A sphere reflects a collimated
beam into 4 steradians with equal power per steradian in all directions, and this of
course works backwards too; you can see the whole illumination pattern in direction
cosine space by looking at its image in a sphere. For looking at microscope illumination,
mount the ball bearing on a flat black plate in reflection, or on a microscope slide with
a tiny glue patch in transmission. You can see the microscope lens in the ball too, so
you can align the two for concentricity that way. The direct readout in direction cosine
space allows you to see what your illumination function looks like very easily, though
you may have to stop down your collection NA to get a clear view of it.

In other situations, the interior of a ping-pong ball cut in half makes a very handy
screen for projecting the illumination on. It’s especially good as a scatterometer with
diffracting structures and laser illumination; shine the laser through a hole in the top of
the hemisphere and look at the diffraction spots. (Ping-pong balls can also be used as
integrating spheres—see Section 5.7.8.)

"Recall that the pupil is usually at or near the transform plane.
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9.8.8 Image Radiance Uniformity

We saw in Section 2.4.1 that a planar source with no preferred direction is Lambertian.
Whenever such a diffuse planar object is imaged on a planar detector over a wide field,
the edges of the image become darker. The darkening gets worse rapidly as the field angle
0 increases; the image radiance goes as cos* 6, as we can verify by counting powers of
the cosine. The object—pupil distance goes as sec 6, which gives us two cosine factors
since the flux at the pupil goes as 1/r%. The projected pupil area goes as the cosine,
which makes three, and Lambertian angular dependence of the object radiance makes
four factors of the cosine altogether. Vignetting at places other than the pupil and the
increased Fresnel losses at high angles make real systems somewhat worse in general,
though there are ways of increasing the loss near the middle to flatten the curve a bit. The
cos* falloff is also why it’s easier to get uniform illumination by spacing many sources
at close intervals, rather than trying to use one source plus diffusers.

9.8.9 Contrast and lllumination

Imaging systems stand or fall by their contrast. A featureless image contains no informa-
tion; one where the contrast comes from an unexpected mechanism (e.g., stray fringes)
may contain even less—you’re more confused and misled after the measurement than
before.

The word contrast is used in two different senses. Contrast is defined as the ratio of
p-p intensity change to mean intensity (flux density, irradiance) in the image, which is 0
for no contrast and 1 at perfect contrast:

_ Imax - Imin

. (9.67)
Imax + Imin

The other sense denotes the source of the contrast: imaging can be done in phase contrast,
interference contrast, and so on. Contrast is a normalized measure; dialing down the
illumination power doesn’t change the contrast, but of course the signal level and SNR
will deteriorate.

The image contrast is a complicated function of the illumination type, collection,
detection strategy, and sample. The dependence is not weak, either; different illumination
will make bright areas look darker than dark areas. For example, smooth aluminum
lines on rough, (nearly black) polycrystalline silicon carbide will look very bright when
illuminated in bright field, but will look dark when illuminated obliquely, because their
specular reflection causes the returned light to miss the objective lens, whereas the rough
surrounding surface will scatter some light into the lens—a black surface can look lighter
than a mirror. Other examples are everywhere. The scattering geometry is important too;
linear features such as scratches or smears scatter very efficiently perpendicular to the
line, but only weakly at other angles; if the illumination doesn’t have any component
perpendicular to the lines, the scattered light will be weak. (This phenomenon is familiar
to us all—think of a smeared car windshield at night.)

The most important thing in choosing an illumination strategy for your measurement
is to mess around with a whole lot of alternatives before making a final choice. Automatic
inspection, machine vision, lithography, microscopy, and trace defect detection live and
die by the quality of the illuminator and by how well it’s matched to the characteristics of
the problem. Poorly chosen illumination can make the software job many times harder
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(or even impossible). Don’t just buy a fiber illuminator, shove it in, and expect it to
work well.

In the highest resolution optical microscopy, resolution is improved by using diffuse
illumination and high-NA microscope objectives, because high spatial frequency compo-
nents can take a plane wave component near grazing and send it back the way it came,
so that the spatial frequency bandwidth is doubled. Unfortunately, most samples show
almost no contrast when examined this way, so experimentation is needed even here.

9.8.10 Retroreflectors and lllumination

Any time you’re trying to inspect a transparent or specularly reflecting object that’s
bigger than your lens, there’s a problem with illumination uniformity and efficiency,
as well as a serious case of changing illumination conditions with field position. One
very useful way of solving this is to use a big chunk of retroreflecting material, with
the illuminator and sensor optically superposed. Light from the source bounces off the
specular surface, hits the retroreflecting material, and retraces its path to the collecting
lens. This is a great way of keeping the illumination conditions the same even with a
small light source—it’s sort of a poor man’s telecentric system. The angular spread of
the returned beam is a degree or so, so there is a certain amount of ghosting and other
artifacts, but for jobs like inspecting plastic film for defects, or looking at semiconductor
wafers, it’s a very useful trick sometimes (see Section 7.8).



