
CHAPTER 7

Exotic Optical Components

To know a thing well, know its limits. Only when pushed beyond its tolerance will its true
nature be seen.

—Frank Herbert, Dune

7.1 INTRODUCTION

The mundane optical tasks of directing and transforming beams are mostly done with
lenses and mirrors, with the occasional polarizer or wave plate thrown in, and this
is enough for cameras and microscopes. They’re the workhorses: steady, dependable,
and reasonably docile, but not very fast. Building advanced instruments is more like
racing. The more exotic components like fibers, gratings, scanners, and modulators are
thoroughbreds—they’re good at what they’re good at, and aren’t much use otherwise.
(Watch your step in this part of the paddock, by the way.) Fibers are left until Chapter 8,
but there are lots of connections between there and here.

7.2 GRATINGS

A diffraction grating is an optical surface with grooves in it, shaped and spaced so as to
disperse incident polychromatic light into a sharply defined spectrum. There are lots of
variations, but they’re all basically holograms—the grooves reproduce the interference
pattern between an incident monochromatic beam and the desired diffracted beam, and
so form an optical element that transforms the one into the other. Some gratings are
made holographically, and some are ruled mechanically, but the operating principle is
the same.

The most common type is the classical plane grating , a flat rectangular surface with
equally spaced grooves running parallel to one edge. Phase matching at the surface
governs their operation; as with a planar dielectric interface, this condition can be satisfied
over a broad continuous range of incident k vectors.

There are also Bragg gratings, where the grating structure runs throughout some vol-
ume, a more complex structure that is important in fiber devices, holograms, acousto-optic
cells, and some diode lasers, as we’ll see later in this chapter.
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Figure 7.1. Plane diffraction grating.

7.2.1 Diffraction Orders

We can make this a bit easier to understand by looking at the special case of Figure 7.1.
A metallic plane grating lies in the xy plane, with G sinusoidal grooves per unit length,

h(x, y) = a sin(2πGx), (7.1)

where a � λ and G, kx , and ky are small compared to k (i.e., a weak grating of low spatial
frequency). A plane wave exp(ikinc · x) hits the surface and gets its phase modulated by
the changing height of the surface. If the medium is isotropic, linear, and time invariant,
the modulus of k can’t change,† so we’ve got a pure spatial phase modulation, as in
Section 13.3.7. Thus the phase modulation produces mixing products (see Chapter 13)
with wave vectors kDm,

kDm = ki + mkG, (7.2)

where kG = 2πGx̂ and m = . . . , −1, 0, 1, 2,. . . . Equation (7.2) can also be derived
immediately from the phase matching condition: because the surface is periodic, the fields
have to be invariant (apart from an overall phase) if we shift it by an integer number of
cycles. Only a finite range of m produces propagating waves at the output—only those
whose |kxm| < k; that is,

−
√

k2 − k2
y − kx

kG

< m <

√
k2 − k2

y − kx

kG

. (7.3)

Although we’ve kept ky in this formula, gratings are nearly always oriented to make
ky as small as possible, so that it enters only quadratically in θd . Since G is wavelength
independent, we can solve (7.2) (in the special case ky = 0) for λ, yielding the grating
equation‡

λm = sin β − sin α

mG
. (7.4)

†When we get to acousto-optic modulators, this won’t be true anymore, and frequency shifts will occur.
‡You sometimes see it used with the other sign convention, so that there is a plus sign in �u = sin θd − sin θi ;
in any event, specular reflection (m = 0) has �u = 0.
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The illuminated patch on the grating is the same width for both beams, but because
of obliquity, the diffracted beam undergoes an anamorphic magnification in x of

M = cos β

cos α
. (7.5)

In general, the spectrum gets spread out in a cone, but in the ky = 0 case, it gets
spread out in a line, with only a slight curvature due to the inescapable finite range of ky

in real apparatus. If we send broadband light in at θi , we can select a narrow wavelength
band centered on λ by spatial filtering.

The nonlinear relation of θd to θi for a given wavelength means that classical plane
gratings cause aberrations if the light hitting them is not collimated in the x direction.
These aberrations reduce the resolution of the spectrum and cause spectral artifacts, so
we normally allow only a single kx and a limited range of ky .

Example 7.1: Czerny–Turner Monochromator. A monochromator is a narrowband tun-
able optical filter, based on the Fourier optics of gratings and slits. The classical design
is the Czerny–Turner, shown in Figure 7.3. Polychromatic light from the entrance slit
is (spatially) Fourier transformed by spherical mirror M1, so that every point in the slit
produces its own plane wave at each wavelength. These are then dispersed by the (rotat-
able) grating and transformed back by M2 to produce a set of images of the entrance slit
on the plane of the exit slit, of which only one is allowed to escape. Rotating the grating
moves the dispersed spectrum across the exit slit, so that a different λ emerges.

The spherical mirrors are used well off-axis, so there is a significant amount of coma
and astigmatism as well as spherical aberration, which must be accounted for in the
design. Note the anamorphic magnification and pupil shift in the figure; normally we use
mirrors that are somewhat larger than the grating to combat this.

In designing monochromators and spectrometers, we have to remember that most of
the light doesn’t make it out the exit slit, but bounces around inside the box, so we need
good baffles. Otherwise this stray light would bounce all over the place inside, and some
of it would eventually escape through the exit slit and contaminate the output spectrum.
There’s no place in Figure 7.2 to put a baffle that won’t obscure the optical path, so real
Czerny–Turners don’t have planar layouts. The mirrors are canted down a bit (into the
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Figure 7.2. Czerny–Turner monochromator.
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page), which depresses the grating position enough to fit a good baffle in over top, which
helps a lot.

Another thing to watch out for in grating instruments, especially adjustable ones, is
temperature-compensating the slit opening. Carelessness here, such as using brass slits
on steel screws and a long mechanical path, typically leads to throughput changes of
several percent per ◦C.

The other main problem with spectrometers is that they’re all polarization sensitive.
The p-to-s diffraction efficiency ratio of a transmission grating is massively wavelength
dependent, and mirrors used off-axis can easily contribute several percent polarization
(see Example 5.2).

7.3 GRATING PATHOLOGIES

So far, a grating is a reasonable spatial analogy to a heterodyne mixer (see Section
13.7.1). The analogy can be pressed further, because the grating also has analogues of
LO phase noise (scattered light), LO spurs (periodic errors in the grating phase, giving
rise to ghosts), and spurs due to LO harmonics (multiple orders, leading to overlap). It
starts to break down when the 3D character of the intermodulation starts entering in;
spatial frequency differences can arise from shifts in ω or θi , but the resulting fields are
quite different.

7.3.1 Order Overlap

For any grating and any θi , the function λ(θd) is multivalued, so that more than one
wavelength will make it through a monochromator at any given setting. Simple grating
spectrometers are limited to a 1-octave range in the first order, as shown in Figure 7.3,
and the limitation gets tighter at higher orders. The best way to reject light that would be
aliased is to use cross-dispersion: just put a second grating or prism at 90◦ to separate out
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Figure 7.3. Mth order wavelength as a function of � sin θ .
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the orders; the second grating’s dispersion limits the allowable slit length. Cross-dispersed
gratings are a good match to 2D detector arrays such as CCDs.

7.3.2 Ghosts and Stray Light

If we consider a grating as a frequency mixer, it isn’t surprising that irregularities in the
fringe spacing get transformed into artifacts in the diffracted spectrum. Small-scale irreg-
ularities give rise to a smoothly varying diffuse background of scattered light, which sets
the maximum rejection ratio of a spectrometer. Low frequency variations in the grating
pitch, caused, for example, by diurnal temperature variation in the ruling engine during
a run, produce close-in sidebands on the diffraction spectrum just the way they would
in an RF mixer; these close-in artifacts are called Rowland ghosts . Ghosts occurring
further away are called Lyman ghosts and are even more objectionable, since it’s much
harder to connect them to their true source. As we saw, baffles help the stray light a
lot, but ghosts are more of a problem, since they follow the normal light path through
the exit slit. Both can be dramatically reduced by using another grating and a third slit,
to make a double monochromator , and for some very delicate measurements such as
Raman spectroscopy, people even use triple monochromators. It’s amazing that any light
makes it through all that, but it does if you do it properly, and you get double or triple
the linear dispersion, too.

7.4 TYPES OF GRATINGS

Classical plane gratings are wonderful at dispersing different wavelengths, but bad at
almost everything else—they cost a lot, aberrate converging beams, treat s and p polar-
izations differently enough to be a bother but not enough to be useful, require throwing
away most of our light to get high spectral resolution, the list goes on and on. Lots
of different kinds of gratings have been developed to try to deal with some of these
difficulties.

Nearly all gratings sold are replicas, made by casting a thin polymer layer (e.g., epoxy)
between the master grating and a glass blank (using a release agent to make sure it sticks
to the glass and not the master). Reflection gratings (the usual kind) are then metallized.

Aside: Grating Specifications. Since everything about gratings depends on k||, their
properties are usually specified for use in the Littrow configuration, where kd = −ki

(i.e., the diffracted light retraces its path). This implies that ky = 0, and that there is no
anamorphic magnification of the beam, which simplifies things a lot, but isn’t necessarily
representative of what you should expect far from Littrow.

7.4.1 Reflection and Transmission Gratings

The essential function of a grating is to apply a very precise spatial phase modulation
to an incoming beam. This can be done by reflecting from a corrugated surface, or by
transmission through different thicknesses of material. Transmission gratings have the
advantages of lenses: compact multielement optical systems, lower sensitivity to flatness
errors, and less tendency for the elements to get in one another’s way. On the other hand,
multiple reflections inside the transmission grating structure give rise to strong artifacts,
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making them unsuitable for high resolution measurements in general. With the exception
of hologon scanners, you should use reflection gratings for nearly everything.

Reflection gratings are usually supplied with very delicate bare aluminum coatings.
Touching a grating surface will round off the corners of the grooves and ruin the grating,
and anyone who tries to clean one with lens paper will only do it once. Pellicles can
be used to protect gratings from dust. Gold-coated gratings are useful, especially around
800 nm where the efficiency of aluminum is poor.

7.4.2 Ruled Gratings

Ruled gratings have nice triangular grooves, which allow high diffraction efficiency, but
since the process of cutting the grooves produces minute hummocks and irregularities
in the surface, they also have relatively high scatter. The increasing scatter limits ruled
gratings to a practical maximum of 1800 lines/mm.

Ruled gratings can be blazed by tipping the cutting point so that the grooves are
asymmetrical; by the array theorem of Fourier transforms,† a regular grating illuminated
with a plane wave will have an angular spectrum equal to the product of the angular
spectrum of a single grating line (the envelope) times the line spectrum from the I
function. Blazing is a way of making the peak of the envelope coincide with the diffracted
order, by tipping each grating line so that the specular reflection from that line is in the
diffracted direction. The gratings of Figure 7.4(a) and (b) are blazed.

A grating blazed at λB works well from about λB to 1.5λB , but falls off badly at
shorter wavelengths. Like most other grating parameters, the blaze wavelength is quoted
for Littrow incidence.

7.4.3 Holographic Gratings

Holographic gratings are frozen interference fringes, made by shining two really, really
good quality laser beams on a photoresist-coated substrate. The grating period can be
adjusted by changing the angle between the beams, or a transparent substrate can be
suspended in an aerial interference pattern with fringe frequency �k, for example, from
a laser bouncing off a mirror, and tipped to change the spatial frequency �k|| at the
surface. If the resist layer is thin and is developed after exposure (i.e., unexposed resist
is washed away), a surface grating results. This grating is then transferred to a durable
metal surface by plating it, attaching the plated surface to a stable support (e.g., a glass
blank), and then chemically or mechanically stripping the resist, leaving its image in the
metal. This metal submaster is then used to make replicas.

The grooves in a holographic grating are ideally sinusoidal in shape (although they can
be blazed by ion milling or evaporation of metal from oblique incidence, or by special
lithography techniques). The peak-to-peak phase modulation in the reflected wavefront
is then roughly

�φ = 2kZd, (7.6)

where d is the peak-to-valley groove height, and shadowing has been neglected.
Best overall efficiency with a sinusoidal modulation is obtained when the specular

order goes to 0, which happens with �φ = 4.8 radians (in RF terms, the first Bessel

†We’ll see it in Example 13.8 and Section 17.4.3 as convolution with a I function.
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Figure 7.4. Diffraction gratings: (a) ruled, (b) replicated, and (c) holographic.

null at a modulation index of 2.405—see Section 13.3.7). Deep gratings are therefore
used for long wavelengths, and shallower ones for short. Holographic gratings have
less small-scale nonuniformity than ruled ones, so they exhibit less scatter and possibly
fewer ghosts. The diffraction efficiency of holographic gratings is less strongly peaked
than blazed ruled gratings, so they may be a better choice for weird uses.

7.4.4 Concave Gratings

From a diffraction point of view, there’s nothing special about a flat surface; since the
grooves embody the interference pattern between the incident and diffracted light, we
can sample the pattern anywhere we like. Concave gratings combine the collimating,
focusing, and diffracting functions in a single element. They are very expensive but are
worth it in the deep UV, where mirror coatings are very poor (R ≈ 0.20–0.35), so extra
bounces cost a lot of photons.

The trade-off is bad aberrations; the focusing mirror is used off-axis, and the diffracted
beam fails to obey the law of reflection on which mirror design is based. Concave mirror
spectrographs are therefore usually highly astigmatic. This is not as bad as it sounds,
since the image of a point in an astigmatic system is a line in the tangential plane (at
the sagittal focus) or in the sagittal plane (at the tangential focus) (see Section 9.4.3).
Providing the slits are at the tangential focus, the errors caused by astigmatism can be
kept small, since the astigmatism’s main effect is then to smear out the image along the
slit. Of course, in a real situation the tangential image is not a perfectly straight line, and
its curvature does degrade the spectral resolution somewhat.

There exist aberration-reduced holographic concave gratings, where the groove spacing
is intentionally made nonuniform in such a way as to nearly cancel the leading aberrations
over some relatively narrow range of θi and λ, which are great if you have the budget
for a custom master, or a catalog item happens to fit your needs.

7.4.5 Echelles

An echelle grating (shown in Figure 7.5) is a coarse-ruled grating used in a high order,
near grazing incidence; the scattering surface used is the short side of the groove instead
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Figure 7.5. Echelle grating.

of the long side (like the risers of the stairs, rather than the treads). It is not unusual
for an echelle to be used in the 100th order. Echelles usually have between 30 and 500
lines per millimeter and a really big one (400 mm) can achieve a resolving power of
2W/λ ≈ 106, a stunning performance. Because of the angular restriction, echelles are
usually used near Littrow.

Problems with echelles include expense and severe grating order overlap. The
expense is due to the difficulty in maintaining precision while ruling the coarse, deep
grooves required, and of course to the low manufacturing volumes; the overlap requires
cross-dispersion or a very well understood line spectrum.

7.5 RESOLUTION OF GRATING INSTRUMENTS

7.5.1 Spectral Selectivity and Slits

The usefulness of grating instruments lies in their selectivity—their ability to treat the
different wavelengths differently. It’s no use dispersing the light at one θi if it instantly
remixes with other components at different θi , different ω, but the same θd (take a
grating outside on a cloudy day, and try seeing colors). Just how we want to treat each
wavelength varies; in a monochromator, we use a spherical mirror to image the angular
spectrum on a slit, in order to select only one component, whereas in a pulse compressor,
we just add a wavelength-dependent delay before recombining.

7.5.2 Angular Dispersion Factor

In computing the resolution of a grating instrument, we need to know the scale factor
between λ and θd , the angular dispersion D :

D = ∂β

∂λ
= GM sec β = (sin β − sin α)

λ cos β
. (7.7)

7.5.3 Diffraction Limit

The wavelength resolution of an ideal grating is limited by size, order, and operat-
ing wavelength. A uniformly illuminated square grating of side W has a sinc function
lineshape as a function of k‖,†

E(u, v) = E0m

W

λ
sinc

(
(u − ui − mG)

W

λ

)
sinc

(
(v − vi)

W

λ

)
(7.8)

†The xy projection of k, that is, (kx , ky ).
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(with u = kx/k and v = ky/k as usual, and assuming that k is along x). By smearing
out the angular spectrum, this effect sets a lower limit to the useful slit width in a
spectrometer. As we’ll see in great detail in Section 17.6, this sinc function is a nuisance,
having slowly decaying sidelobes in its transform. (Don’t worry about the sinc functions
due to the slits—the exit slit is at an image of the entrance slit, whereas those sidelobes
are in the pupil.)

In applications needing the cleanest peak shapes, it is sometimes worth apodizing the
incoming light so that its diffraction pattern decays before hitting the edge of the grating.
A carefully aligned linear fiber bundle can do a good job of this, provided the aperture
of the spectrometer is a bit larger than the fibers’.

The equivalent width of this sinc function is � sin θd = �u = λ/W , or in angular
terms,

�β = λ

W cos β
. (7.9)

The theoretical resolving power R of a grating is the reciprocal of the
diffraction-limited fractional bandwidth:

R = k

�k
= λ

�λ
= mN = (sin β − sin α)W

λ
, (7.10)

where N is the number of grating lines illuminated. This gives a useful upper limit on R,

Rmax = 2W

λ
, (7.11)

with the limit achieved when sin θd = − sin θi = 1 (i.e., coming in at grazing incidence
and coming back along the incident path). The resolving power is a somewhat squishy
number, of course, because the definition of resolution is arbitrary, you never use slits as
narrow as the diffraction limit, the grating is never perfectly flat nor perfectly uniformly
ruled, and the effects of coma are a limiting factor anyway. Typical values of Rmax range
from 104 to as high as 106 for very large UV gratings.

7.5.4 Slit-Limited Resolution

We normally don’t try to achieve the diffraction-limited resolution, because it requires
extremely narrow slits, which are very fiddly and let through very little light. Thus in
most cases, it’s sensible to use ray optics to discuss spectrometer resolution.

A slit of width w used with a mirror of focal length f produces a beam with an angular
range of w/f radians. The grating and the second mirror will reimage the entrance slit on
the exit slit, with an angular magnification of 1/M = cos θi/ cos θd . The spatial pattern
that results is the product of the two slit patterns, so the angular smear is the convolution
of that of the two slits, taking account of magnification,

A(β) = rect

(
f (β − β0)

wexit

)
� M rect

(
Mf (β − β0)

went

)
, (7.12)

which has equivalent width

�θdslit = (wexit + went/M)/f. (7.13)
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This can be translated into spectral resolution by dividing by ∂θd/∂λ,

�λ

λ

∣∣∣∣
slit

= �β

λD
= (wexit cos β + went cos α)

sin β − sin α
. (7.14)

7.5.5 Étendue

Neglecting diffraction, the étendue n2A�′ of a grating spectrometer is the product of the
entrance slit area wL and the projected solid angle of the grating as seen from the entrance
slit, which is approximately W 2/f 2 at normal incidence. The oblique projection of the
grating area goes down by cos θi , and the anamorphic magnification M = cos θd/ cos θi

changes the effective size of the exit slit, but those are both effects of order 1, so we’ll
sweep them under the rug and say

A�′ = wLW 2

f 2
, (7.15)

which is tiny; if f = 250 mm, a 25 mm grating with a 5 mm × 20 μm slit (4× the
diffraction limit at λ = 500 nm, about typical), n2A� = 10−5cm2·sr. Unfortunately, the
resolution goes as 1/w, so we are faced with a 1:1 trade-off of resolution versus photon
efficiency for a fixed grating size. The diffraction efficiency of the grating isn’t that great,
about 0.8 if we’re lucky, and we lose another 5% or so at each mirror. Furthermore, it
is only at the centre wavelength that the entrance slit is imaged at the exit slit; at other
wavelengths it is offset more and more until the overlap goes to 0, so the total efficiency is
reduced by almost half. A good ballpark figure is that the efficiency of a monochromator
is around 30%.

7.6 FINE POINTS OF GRATINGS

7.6.1 Order Strengths

In general, accurately predicting the strengths of the various diffraction orders requires
a vector-field calculation using the true boundary conditions, but there are some general
features we can pull out by waving our arms.

Right away, we can see by conservation of energy that there are liable to be sharp
changes in the grating efficiency whenever some m enters or leaves the range (7.3),
whether by changing θi or λ. These are the so-called Wood’s anomalies, which are sharp
peaks and troughs in the diffraction efficiency curves. With some grating profiles, these
anomalies are extremely large and sharp. Figure 7.6 shows the calculated diffraction
efficiency of a ruled plane grating with a 9◦ blaze angle, used in Littrow, which displays
strong polarization sensitivity and Wood’s anomalies.

7.6.2 Polarization Dependence

The diffraction efficiency, of a grating is usually a strong function of polarization, being
highest for light polarized across the grooves (i.e., p-polarized, when ky = 0). This is
intuitively reasonable when we consider the behavior of wire antennas—light polarized
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Figure 7.6. Theoretical diffraction efficiency in Littrow of a 9◦ blazed grating. Note the strong
Wood’s anomalies and polarization dependence. (Courtesy of The Richardson Grating Laboratory.
Note that the Richardson book interchanges p and s.)

along the wires (s) causes strong currents to flow in the wires, which therefore reflect it
(or absorb, if there’s a load attached). The current is not interrupted by a change in the
direction of the surface, because it’s flowing along the grooves; thus there is little light
scattered. On the other hand, light polarized across the grooves (p) causes currents that
have to go over the top of the grooves, leading to strong scatter. By and large, this is
how gratings behave, although there are lots of subtleties and exceptions.

7.6.3 Bragg Gratings

The detailed theory of free-space Bragg gratings is fairly involved because of multiple
scattering, but weak ones with constant fringe spacing can be treated by coupled-mode
theory, since there are only a few orders to worry about.

The main feature of Bragg gratings is that the phase matching condition has to apply
throughout the volume, rather than just at one plane, leading to the Bragg condition,
which for a sinusoidal grating is

kd − ki = ±kG, (7.16)

which is known as the Bragg condition .
It’s a very stiff condition, since as Figure 7.7 shows, kG is the base of the isosceles

triangle made up of ki and kd ; for a given wavelength and an infinite grating, there’s
only a single choice of ki that works. This ki selectivity is smeared out by the finite
depth of the grating, just as the angular spectrum is by the finite width of the grating.
Nonetheless, a deep Bragg grating with many fringes is a high-Q filter in k-space.

Bragg gratings can have diffraction efficiencies approaching unity, and in fact since
the diffracted wave meets the Bragg condition for being diffracted back into the inci-
dent wave, Bragg diffraction is a coupled-modes problem of the sort we’ll encounter in
Section 8.3.3.
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Figure 7.7. Bragg grating.

7.7 HOLOGRAPHIC OPTICAL ELEMENTS

We noted that all gratings are holograms, in the broad sense of embodying the interfer-
ence pattern of the incident light with the diffracted light. The class of holograms is of
course much more general than just diffraction gratings. Fresnel zone plates are basically
holograms of lenses, for example, and with the development of computer-generated holo-
grams we can conveniently make more general patterns, for example, holographic null
correctors for testing aspheric optics with spherical reference surfaces, and even beam-
splitters producing several diffracted beams in different directions with widely differing
strengths.

It is somewhat ironic, but a consequence of their very generality, that holographic
elements tend to be application specific. You probably won’t find an off-the-shelf item
that does what you want, so holograms are used mostly in high volume applications such
as bar code scanners.

One exception is the holographic diffuser, whose range of scattering angles can range
from 1◦ to 60◦. These work poorly with lasers due to speckle but are just the ticket for
situations where an ugly illumination function has to be spread out, for example, LEDs,
fiber bundles, and liquid light pipes.

Holograms function differently depending on the number of distinct phase or amplitude
levels available. Simple holograms have only two levels: zone plates made from annular
holes in chrome masks or from a single layer of photoresist. This presents some problems.
For one thing, a two-level zone plate functions as both a positive and negative lens, since
with only two levels, exp(ik · x) is indistinguishable from exp(−ik · x). Just as adding
bits helps a DAC to mimic an analog signal more accurately, so more levels of phase or
amplitude improves holographic optics. The most popular way to implement this idea is
binary optics : add more levels of lithography, with binary-weighted phase shifts, just as
in a DAC.

7.7.1 Combining Dispersing Elements

It is often convenient to combine two dispersive elements in one system, such that their
angular dispersions add or subtract. The usual rule is that if the diffraction direction tends
to straighten out, the dispersion effects tend to subtract, whereas if the beam is being sent
round and round in a circle, the effects add. This of course applies only for elements of
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Figure 7.8. Cobbling gratings to add or subtract the diffractive effects, while possibly changing
the beam shape anamorphically. Leaving the second grating near grazing multiplies the tuning
sensitivity of both diffractions.

the same sort; gratings bend shorter wavelengths less, whereas prisms bend them more.
A combination grating and prism could have additive effects even with a nearly straight
optical path, like an Amici prism (Section 4.9.3).

Gratings and prisms can be used to change the beam diameter anamorphically (i.e.,
with magnification different in x and y). The gratings in Figure 7.8 first expand and
then contract the beam. The width out of the page is of course unaltered. This anamor-
phic property is often useful with diode lasers, and Figure 7.8 shows how it can be
accomplished with and without tuning sensitivity of the angular deflection.

7.8 RETROREFLECTIVE MATERIALS

We’re all familiar with retroreflecting materials, used for bicycle reflectors, traffic signs,
and safety clothing. They have lots of possibilities in instrument design too, and so
everyone should know something about them. The basic idea is to use large numbers of
small, poor quality retroreflectors, so as to return incident light generally back toward
its source, with an angular spread of 0.5◦ to 5◦ in half-angle and (unlike larger corner
cubes) no significant lateral shift.

There are two main kinds: glass beads and corner cube arrays embossed in plastic (see
Section 4.9.8). A sphere in air makes a pretty good retroreflector if its index is chosen
so that incident light is focused on the opposite surface of the sphere. A ray at height
h, parallel to the axis, has an angle of incidence sin θi = h/R, and to focus on the back
surface, sin θd = h/(2R), so by Snell’s law,

n2

n1
= sin θi

sin θr

= h/R

h/(2R)
= 2, (7.17)

which can just about be done in glass. The angular spread can be adjusted via defocus,
by varying n. To prevent most of the light getting out the other side, aluminum-coated
beads are used, with the aluminum etched off the top surface after the coating is applied.
The embossed plastic stuff has a narrower acceptance angle than the spheres, because
away from the symmetry axis of the corner, more and more of the light fails to make
the three TIR bounces required for retroreflection. It’s also a bit of a puzzle to mount,
because you can’t touch the TIR surface or you’ll deactivate all the little cubes. The
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standard solution is to use a quilted foam backing that touches only a few percent of the
area, which makes the retroreflection spatially nonuniform.

The figure of merit for a retroreflective material is its specific brightness , which is
measured in inverse steradians, although it’s quoted as lux per steradian per lux or
other cute units that amount to the same thing: if you put in 1 W/m2, how much flux
is radiated per steradian at specified angular offsets from exact back-reflection? For a
retroreflector with an RMS beam spread half-angle of �θ and photon efficiency η, the
specific brightness is

B ≈ η

π(�θ)2
. (7.18)

For a �θ of 0.5◦, this is around 4000—a factor of 13,000 over a Lambertian (�′ = π )
reflector, assuming that η = 1. The best real materials are more like 900 or 1000, a factor
of 3000 or so over Lambertian. This is an enormous effect—a strip of tape in the right
place can get you a 70 dB (electrical) signal level increase, which is well worth the labor
and the compromises it takes to use these materials (they’re very speckly when used with
lasers, for example).

The stuff made for use in signs and clothing isn’t that great; the specific brightness
is usually below 300, and 60 is not uncommon, but those numbers still represent big
signal increases in systems where most of the illumination is not collected. There does
exist material that gets into the 103 range, but it isn’t easy to find. You can also buy
just the beads,† made usually from barium titanate glass with an index of 1.9 or a bit
higher. They’re used for spraying onto traffic paint before it dries and may be helpful
for special situations where it’s inconvenient to use the made-up sheet material. Other
considerations include rain—glass bead retroreflector relies on refraction at the air–glass
boundary, and so doesn’t work well when it’s wet. Assuming the TIR surfaces remain
dry, the corner cube stuff is almost unaffected by rain.

The best retroreflective materials in the 3M catalog for instrument use are Scotchlite
2000X Very High Gain Sheeting (corner cubes) and Scotchlite 7610 High Gain Reflective
Sheeting (spheres). Both are available in tape rolls and can really make a difference to
your SNR, especially in a fiber-coupled instrument. The other main manufacturer of this
stuff, Reflexite, also has cube material tailored to produce a nearly fixed offset angle (not
180◦).

TIR film will mess up the polarization of your beam, as in Section 4.9.8. Reflexite
makes metallized corner cube material, which reduces this problem. Plastic retroreflector
is naturally of no use in the UV, but the high brightness glass bead stuff is quite good,
as it has no plastic overcoat on top of the spheres.

7.9 SCANNERS

Scanning systems are one of the thorniest areas of electro-optical instrument building.
The whole point of scanning is to interrogate a huge A� volume sequentially with a
low-A� system. None of the available methods is as good as we’d like, and the cost
of commercial solutions is enough to make you gasp (how about $4000 for a 25 mm,
two-axis galvo scanner with analog driver cards and no power supply?).

†Suppliers include Potters Industries and Cataphote.
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The difficult design issues, together with the very high cost of playing it safe, make
scanner design worth a considerable amount of attention. The main points to worry about
are scanner and encoder accuracy, rectilinearity, range, speed, jitter, aberration buildup,
field flatness, temperature drift, and power consumption (other than that, it’s easy). We’ll
start with mechanical scanners.

Before we begin, it is useful to have a bit of vocabulary to describe different scan-
ner vices. Nonrepeatable motions, caused, for example, by out-of-round bearings, are
called jitter if they’re in the scan direction and wobble otherwise. Repeatable errors are
scan nonlinearity along the scan direction, and scan curvature out of it. Temperature
drift, which is sometimes very serious, comprises offset (zero) drift and gain drift. Scan-
ning is often combined with signal averaging to reject noise and spurious signals; see
Section 10.9.2.

7.9.1 Galvos

Galvanometer scanners are electric motors that don’t turn very far (±45◦, maximum) but
can accelerate very fast and move very accurately. They usually run on ball bearings,
but some use flexure bearings. Single- and double-axis galvos are available that provide
12 bit angular accuracy with settling times of several milliseconds. Small ones are much
faster than large ones, because the moment of inertia I goes as mr2, which tends to grow
as r5. The angular accuracy of the encoders isn’t all that great over temperature, typically
10 arc seconds drift and 0.05% gain/◦C, with some being much worse. If you really need
that 12 bits, you have to compensate for those in some way. Jitter typically runs 10–20
arc seconds, and wobble more like 5–10. Those are really what limit the resolution. The
torque from any motor tends to go as the volume—due to field and current limitations,
the available force per unit area is approximately constant, so the torque goes as the
surface area times the diameter. The moment of inertia grows faster than that, so big
galvos tend to be slow.

Resonant galvos shrink the mirror and the motor, and add a big torsion spring to
get their restoring force, which enormously reduces their moment of inertia. This makes
them quite a bit faster (500 Hz), but being high-Q resonant systems, they cannot be
controlled within a cycle; only the amplitude and phase of their sinusoidal oscillation can
be changed, and many cycles are required for settling afterwards. Thus resonant galvos
are good fast-scan devices, where they compete with rotating polygons and hologons;
the trade-off is adjustable angular range and sinusoidal scan versus uniform scan speed
through a fixed angular range.

7.9.2 Rotating Scanners

All reciprocating scanners have to slow down and turn around at the end of their travel,
which makes them relatively slow. What’s worse, their varying scan speed makes it
relatively difficult to take data points equally spaced in angle—it requires a continuously
varying clock frequency. This can be implemented with a lookup table in hardware, or
done by resampling the data afterwards (see Section 17.8). Since the dwell time on each
pixel is different, more lookup tables may be needed to take out the resulting gain error
and offset. All these lookups, whose contents depend on unit-to-unit differences such as
the details of loop damping and rotor imbalance, require an onerous calibration procedure
for high accuracy applications.
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Nonconstant scan speed is particularly obnoxious when you’re using a continuous
frame scan, since it leads to hooks at the ends of the scan line. Large amounts of overscan
are necessary to combat it. A scanner with good acceleration can make sharper turns,
so less overscan is needed with high torque motors, low moment of inertia (i.e., small
mirrors), and slower scan rates. This is all manageable, but still a constant, fast-scan
speed (constant in m/s or rad/s depending on the application) would be useful for raster
applications.

One partial solution is a continuously rotating scanner, such as a polygon mirror or
holographic scanner.

7.9.3 Polygon Scanners

A polygon scanner is a spinning wheel with flat mirror facets on its periphery (Figure 7.9).
These may be oriented normal to the radius vector, so that the wheel is a polygonal cylin-
der, or angled like a cone. In order to get a straight-line scan with a cylindrical polygon,
the beam has to come in normal to the rotation axis, although other configurations exist
with tilted facets.

With the beam so aligned, rotating a mirror through θ /2 deviates the reflected light
by θ , so an n-facet polygon deflects light through an angular range �θ of

�θ = 4π

n
, (7.19)

although you can’t use all that range, since at some point the edge of the facet has to
cross your beam, leading to a dead time on each facet. A polygon rotating at constant
speed naturally produces a constant angular velocity (CAV) scan, which is great for
some things (e.g., lidar) but a problem for others (e.g., document scanning, where a
constant linear velocity is much more convenient). Polygons can go very fast; speeds
over 50,000 rpm can be achieved with a small solid beryllium scanner in a partial vacuum,
though not easily or cheaply. The ultimate limit is set by deformation and then failure
of the polygon itself. High end printers ($1M) use polygons with 10–12 facets running
at up to 40,000 rpm on air bearings (with 10 beams, that’s a 70 kHz line rate), but
in more pedestrian applications, keep below 7000 rpm, and remember that below 3000

Ω

2Ω

Figure 7.9. Polygon scanner.
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things get much easier. Polygons cause no aberration of the scanned beam. They have a
unidirectional scan pattern, with a retrace interval as the edge between two facets crosses
the beam. Well-made polygons can have a facet-to-facet angular accuracy of a few arc
seconds, which is good enough for most applications. Cheap polygons are closer to an
arc minute, but cost only a few dollars.

7.9.4 Polygon Drawbacks

Polygons have a number of drawbacks. Their moment of inertia is high, so that the
scan rate cannot be changed rapidly. We usually use them to get high speed, so that the
kinetic energy is high, which compounds the speed problem and adds wind resistance,
turbulence, and noise, ultimately forcing us to use a vacuum chamber.

The constant angular velocity of the beam means that it scans a flat surface at a
nonuniform rate, unless we do something about it. A subtler difficulty is that since
the rotation axis does not pass through the surface of the mirror, as it does with a
galvanometer, the scanned beam translates as well as pivoting during a line. Thus a
polygon-scanned system lacks a true pupil. You can get (very expensive) f -θ lenses,
which have just the right amount of built-in barrel distortion to convert a constant angular
velocity scanned beam into a constant linear velocity spot, and a flat field; they’re big
chunks of glass, used at very low aperture (e.g., a “250 mm f /16” lens whose front
element is 90 mm across). It is somewhat galling to have to use a $1200 lens with a $25
polygon.

The remaining trouble is their very high sensitivity to shaft wobble. A polygon accurate
to a few arc seconds is very much easier to get than a motor whose shaft is straight and
stable to that accuracy, especially at the end of its life. Air bearings are a good choice
for high speed polygons, but they don’t usually work as well at low speed.

7.9.5 Butterfly Scanners

In Section 4.9.4, we encountered the pentaprism, which is a constant deviation 90◦

prism that works by having two reflections; tipping the prism increases one angle while
decreasing the other, making the total constant. The same principle can be applied to
scanning, resulting in the butterfly scanner of Figure 7.10, which is a nearly complete
solution to the shaft-wobble problem; drawbacks are complexity, expense, probably worse
fixed facet-to-facet errors, and much higher air resistance, noise, and turbulence.

7.9.6 Correcting Rasters

Once the shaft wobble has been corrected, the scan is still not perfect. To get really good
rasters from any multisegment device, you really have to have software that knows which
segment you’re on, and dials in the appropriate offsets. While this requires calibration,
it’s not a difficult problem since it’s only line-to-line variation and can be done in the
instrument itself using a vertical bar test pattern. Furthermore, the dimensional stability
of the hologon or polygon means that it can be done once and forgotten about.

In-plane errors cause only timing trouble, which can be eliminated completely.
Out-of-plane errors are more obnoxious visually, causing obvious nonuniformity in
raster line spacing, and are more difficult to handle, requiring an additional deflection
element such as a Bragg cell.
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Figure 7.10. The butterfly scanner works on the pentaprism principle.

7.9.7 Descanning

In order to reduce the required n2A�′ of the detection system (which makes it smaller,
faster, cheaper, and dramatically more resistant to background light), we usually need to
descan the received light. There’s an easy and a hard way to do this.

The easy way is to work in backscatter, and use the same scanner on the transmit and
receive sides of the instrument, for example, to interrogate a sample one point at a time.
If the scanner is at the pupil of the objective lens, light backscattered from the sample
will be recollimated, so that it comes back antiparallel to the transmit beam. The mirror
won’t have had time to move far during the time of flight, so by symmetry, both the
scan angle and any angular jitter are removed, leaving only a bit of Doppler shift.

The hard way is to use a second scanner, synchronized to the first. You have to do this
sometimes, for example, in a long path sensor where you’re sweeping a focused beam
back and forth without steering it, and can’t work in backscatter for some reason. This
really is a miserable way to make a living, so work hard to avoid it; a corner cube or
some retroreflecting tape will often let you off this hook.

Aside: Preobjective and Postobjective Scanning. Before scanning, our beam is
usually collimated, so its NA is very low. It seems a bit perverse to take something like
that, which we can focus very well with inexpensive lenses, scan it through perhaps 45◦,
and then try to focus it with a very expensive f -θ lens. Couldn’t we focus first and scan
afterwards?

If the NA is low enough and the working distance long enough, this is a good possi-
bility. The major drawback is that the field flatness and nonuniform scan speed (in m/s
on the sample surface) are uncorrected unless you do something fancy yourself. This
may not matter in your application, in which case this postobjective scan strategy will
work well. Just don’t try it with hologons (see Section 7.9.9). A hybrid scheme, where
the line scan is preobjective and the frame scan is postobjective, is also widely used.

7.9.8 Constant Linear Scan Speed

It isn’t that easy to achieve constant scan speed with a mechanical scanner. Rotating
a mirror at a constant speed θ̇ /2 produces a reflected beam whose angular speed θ̇ is
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constant; if the scanner is a distance h above a planar surface, the scan position x on the
surface is

x = h tan θ, (7.20)

which is stretched out at large angles, just like late-afternoon shadows. Reciprocating
scanners such as galvanometers and voice coils slow down and stop at the ends of
their angular travel, so they tend to scan more slowly at the edges; if the beam scans
sinusoidally through ±θpk at radian frequency ω, then the scan speed v is

v(θ) = hω

√
θ2

pk − θ2 sec2 θ (θ̇ > 0). (7.21)

The slowdown of θ̇ at large θ approximately compensates the stretching out of x, so
that the resulting curves look like the Chebyshev filters of Section 15.8.3; choosing θpk =
40.6◦ produces a maximally flat response. Table 7.1 shows optimal scan parameters for
an equiripple error from ±0.01% to ±5%: tolerance, linear range θL, peak range θpk, duty
cycle (or scan efficiency), and the corresponding error with a CAV scan of ±θL. Note how
the duty cycle improves as the error band is relaxed, and how much lower the maximum
error is for the galvo versus the polygon, at least when used unaided. Usually we have
to accept more scan speed variation and compensate for it with slightly nonsinusoidal
motion (easiest), nonuniform pixel clock speed, resampling digitally afterwards, or (as
an expensive last resort) an f -θ lens.

If we need to focus the beam on the surface, it’s usually enough to put the galvo at
the pupil of a flat field lens, with due attention to the lens’s geometric distortion.

7.9.9 Hologons

A holographic scanner consists of a spinning surface containing holographic elements
(Figure 7.11). The most common type is the hologon , short for holographic polygon.
A hologon is a spinning glass disc containing radially segmented transmission gratings
(like orange segments), with the grating lines oriented tangentially.

Hologon scanners are best operated near minimum deflection, that is, when the incom-
ing and outgoing beam make equal angles with the surface normal. Small amounts of
wobble in the shaft then cause only second-order angular deviations in the frame direction,
which is an important advantage of holographic scanners over simple polygon mirrors,
though butterfly scanners do even better. Beiser shows that for a scanner producing 90◦

TABLE 7.1. Approximating a Constant Linear Velocity Scan with a Sinusoidal Galvo

Speed Tolerance (±%) θL (±◦) θpk (±◦) Duty Cycle (%) Constant AV Error (±%)

0.01 10.25 41.03 16.1 1.6
0.05 15.0 41.68 23.4 3.5
0.1 17.7 42.17 27.6 4.9
0.5 26.2 44.2 40.5 10.8
1 31.0 45.7 47.5 15
5 52.8 56.8 76 46
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Figure 7.11. A hologon scanner is the diffractive analogue of a polygon. It isn’t as efficient but
has much lower jitter, weight, and wind resistance.

deviation (θi = θo = 45◦), a large shaft wobble of 0.1◦ (360 arc sec, or 1.75 mrad) pro-
duces a scan wobble in the frame direction of only 1.3 arc sec, an improvement of nearly
600:1 over a polygon, with even better performance for smaller wobbles.

The scan line produced by a hologon scanner is in general curved, because ky can’t
always be 0 when we’re rotating the grating in azimuth. By choosing θi = θd = 45◦, the
scan can be made almost perfectly straight, which is how they are usually used. The
deflection is easily found by applying phase matching; if the grating is rotated through
an angle φshaft from the center of the facet, the change in kx of the diffracted beam is
equal to that of the grating, so in the middle of the scan line,

∂θaz

∂θshaft
≈ kG

k
, (7.22)

which is equal to
√

2 for the 45◦ –45◦ scanner. The angular scan speed θ̇ is also mildly
nonuniform, being slightly compressed at the ends of the travel (we saw that this is
actually an advantage in scanning flat surfaces). The effect is nowhere near as strong as
with galvos.

As a practical matter, hologons are restricted to collimated beams. A focused
beam used with a collimated-beam hologon produces an astounding amount of
astigmatism—dozens of waves over a 45◦ scan angle, even with an NA of only 0.01.
Since they are holograms, it is possible to make a scanner that focuses as well as deflects
the light. It might seem that the resultant saving of a lens would be very valuable, but
in fact doing this throws away the major advantage of hologons, the insensitivity to
shaft wobble. Resist the temptation to be too fancy here, unless your performance specs
are modest (e.g., in hand-held bar code scanners). One possible exception would be
adding a few waves of optical power to correct for aberrations in a simplified scan lens,
because the wobble effect would then still be small. The angular accuracy of a hologon
can be as good as 10 arc seconds facet to facet, although 30 is easier and hence cheaper.

If the facets are made with slightly different values of G they will deflect the beam
at slightly different angles, so that an N -facet hologon by itself can perform an N line
raster scan, which allows a useful trade-off between scan speed and alignment accuracy.
(Doing this with a polygon would make it dynamically unbalanced.)
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The diffraction efficiency of hologons is normally quite good—80–90%, but that isn’t
as good as a properly chosen mirror coating, so you’ll pay a decibel or two in detected
signal for using a hologon.

7.9.10 Fast and Cheap Scanners

If your scan range and accuracy requirements are modest, don’t forget the obvious can-
didates, for example, mounting a laser diode on a piezoelectric translator or a bimorph,
and letting the collimating lens do the work. Life doesn’t get much easier than that.

7.9.11 Dispersive Scanning

It is also possible to scan over a small range by using a tunable source (e.g., a diode laser)
with a dispersive element, such as the second compound grating device in Figure 7.8.
This is a very good technique for some purposes, because it is extremely fast (∼20
resolvable spots in 3 ns), and although you do have to avoid mode jumps and cope with
power variations, it presents few problems otherwise.

7.9.12 Raster Scanning

Raster scanning requires a 2D scanner or two 1D scanners in cascade. You can get
two-axis voice coil type scanners, which tip a single mirror about two axes; they behave
a bit like galvos but have only a few degrees’ scan range and aren’t as stable or repeatable,
because the mirror mount usually relies on a single wire in the middle for its location,
and the orthogonality of the tilts is not well controlled.

If we need to use two scanners, we must either accept a pupil that moves around
a good deal (several centimeters with most galvos), or use a relay lens to image the
center of one scanner on the center of the other. The usual approach is to use a small
fast scanner first, to do the line scan, and a large, slow one afterwards for the frame
scan, although the relay lens approach allows both scanners to be the same size. The
moving pupil problem is worst with a pure preobjective scan approach, but if you can
put the scan lens between the line and frame scanners, it gets a lot easier; in the ideal
case of pure postobjective scanning, you can use a simple lens for focusing, with perhaps
a weak toric field-flattening lens to correct for the different object distances at different
scan positions.

7.9.13 Mechanical Scanning

Another approach is to keep the optical system very still and move the sample, as is
done in some confocal microscopes and step-and-repeat photolithography tools. This is
slow and prone to mechanical jitter, due to the requirement to start and stop the motion
of a large mass quickly, and to the instabilities of translation stages. On the other hand,
your point-spread function is really constant with position, and there is no limit on the
number of resolvable spots. Another mechanical scanning method is to rotate or translate
the entire optical system, as in a periscope or an astronomical telescope, which scans
slowly to correct for the Earth’s rotation.
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7.10 MODULATORS

Diode lasers are unique among optical sources in being highly directional and easily mod-
ulated at high speed. Unfortunately, most sources of interest are not like that, so we need
external modulators. Under this rubric lie a fairly motley collection of out-of-the-way
physical effects, all of which have serious drawbacks, not all widely known. Modulators
in general are troublesome devices if you need nice pure beams with uniform polarization,
no etalon fringes, and smooth amplitude profiles.

Most modulators are based on bilinear interactions† between two fields in some mate-
rial, for example, the electro-optic effect, where the applied electrostatic field causes the
dielectric tensor to change, or the acousto-optic effect, where the optical wave diffracts
from a sinusoidal phase grating produced by the traveling acoustic wave.

7.10.1 Pockels and Kerr Cells

Optical modulators based on the linear (Pockels) or quadratic (Kerr ‡) electro-optic effects
are shown in Figure 7.12. These are among the fastest modulators of all, but they are a
genuine pain to use. Think of them as voltage-controlled wave plates.
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(a) Longitudinal Pockels Cell
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Figure 7.12. Pockels and Kerr cells.

†A bilinear interaction is one that is linear in each of two independent variables; that is, it is expressible as
f (x, u) = g(x)h(u). An electronically variable attenuator is an example of a bilinear device if its gain is linear
in its control voltage.
‡The electro-optic Kerr effect is not the same as the magneto-optic Kerr effect, which leads to polarization
rotation in linearly polarized light reflected from a magnetized medium.
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Kerr cells are based on a quadratic electro-optic effect in isotropic materials (usu-
ally nasty inflammable organic liquids such as carbon disulfide or nitrobenzene). Their
quadratic characteristic makes them harder to use in applications needing linearity, of
course, but since the static birefringence is 0, they are pretty predictable. Kerr cells are
excited transversely by dunking capacitor plates into the liquid cell. They are normally
used singly, with bias voltages around 10 kV. The organic liquids are strongly absorbing
in the UV, so Kerr cells are generally limited to the visible and near IR. Getting decent
uniformity requires limiting the fringing fields, which (as we’ll see in Section 16.2.5)
means making the plate dimensions several times their separation.

The variable retardation of electro-optic cells can be used to modulate the polarization
and phase of a beam, as shown in Figure 7.13. Pockels cells are built from crystals such
as potassium dihydrogen phosphate (KDP) or lithium niobate, nasty birefringent things
whose dielectric tensor ε depends on the applied E. The dependence of ε is generally
complicated; a given applied E can change all the coefficients of ε. Since the material
is already anisotropic, the leading-order change is linear in applied field.

Pockels and Kerr cells are usually used as amplitude modulators, by following the
polarization modulator with an analyzer. They can also be used as phase modulators, by
aligning the polarization of the beam with one of the crystal axes, so that the polarization
remains constant but n varies. It’s hard to get this really right in a multielement cell,

(c) Amplitude Modulator

(a) Polarization Modulator

(b) Phase Modulator

Analyzer

Figure 7.13. E-O modulators: (a) polarization, (b) phase, and (c) amplitude.
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because the optic axes of the elements may not be aligned well enough. Fancier things
can be done, for example, frequency shifters made by putting a rotating E field on
a crystal between crossed circular polarizers, but they tend to be rare compared with
phase, amplitude, and polarization modulation applications.

There are two main designs for Pockels cells. Because the applied E changes more
than one element of the dielectric tensor, the field can be applied longitudinally (parallel
to k) or transversely. Longitudinal cells usually have a ring electrode around the outside
of the face, which produces some polarization nonuniformity that limits their ultimate
extinction ratios to a few hundred, even with long thin cells. Transparent electrodes such
as indium–tin oxide are also used, but they’re pretty lossy, and not conductive enough
for the highest speed applications; for really fast stuff, the champion electrode is a low
pressure neon plasma, which improves the extinction to a few thousand, even while
improving the étendue.†

Transverse cells are simply metallized. The trade-off between the two styles is in
étendue and capacitance versus voltage; a longitudinal Pockels cell has a reasonably
large étendue (especially the ITO and neon plasma types) but requires high voltage,
whereas a transverse one has high capacitance and (because it is long and narrow) very
low étendue.

Since the effect is linear, the number of waves of birefringence in a longitudinal cell
is proportional to the line integral of E·ds along the ray path, that is, to the voltage
drop across the crystal. Since going from off to fully on requires a change in retardation
of one-half wave (why?), the figure of merit for a given electro-optic material is the
half-wave voltage Vπ , which—most inconveniently—is usually several thousand volts.‡

Because both polarizations get phase shifted in the same direction, the retardation is less
than the phase modulation, so phase modulators can work at somewhat lower voltages.

The Pockels effect is fast; a properly designed transverse cell such as a 40 Gb/s
telecom modulator can switch in 10 ps, and the intrinsic speed is even higher. The
problem in bulk optics is that with a longitudinal cell whose half-wave voltage is (say)
4 kV, to get a 1 ns edge we have to make the bias voltage change at a rate of 4,000,000
V/μs, which is an interesting challenge—if the 50 � connecting cable is 10 cm long,
it’ll take 80 A for 1 ns just to charge the cable. You can do that with a spark gap or a
series string of avalanche transistors, but only just; the usual method is a big thyratron
producing a 10 ns edge, running into a ferrite-loaded coaxial pulse forming network.§

All these are limited to shuttering applications since you can’t stop an avalanche once
it starts. (These techniques are discussed in Section 15.14.1.) Accordingly, people have
worked out ways to ease the voltage requirement. The main way is to take many thin
plates of electro-optic material dunked in index oil and drive them in parallel as in an
interdigitated capacitor, as shown in Figure 7.12. You can get these down into sub-400
V territory, which is a lot easier although still not trivial.

The optical path in a Pockels cell contains a great big chunk of birefringent material, so
it has a huge static retardation (many waves), and thus has a few percent nonuniformity

†Pockels cell people enjoy suffering almost as much as femtosecond dye laser people used to.
‡This is an example of the extreme linearity of optical materials—even if we get to pick an arbitrarily horrible
material, and orient it for maximum effect, we still need thousands of volts to make an order-unity difference
in the transmitted field.
§Saturation in the ferrite causes the back end of the pulse to move faster than the front end, which leads to
shock formation, like the breaking of an ocean wave on a beach. You can get below 100 ps rise time for a
20 kV pulse in 50 �, but you have to really want to, and the EMI problems are, ahem , interesting.
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of retardation across its face, fairly poor wavefront fidelity, and a significant amount
of temperature drift. Many of the crystals used for Pockels cells are piezoelectric, and
so they may exhibit low frequency resonances; those made with biaxial crystals have
particularly nasty temperature dependence, since (unlike uniaxial crystals) the optic axes
can move around with temperature. For a device with as much retardation as a Pockels
cell, this can be a serious drawback. Low voltage devices have lots of etalon fringes too.
For high accuracy applications, longitudinal Pockels cells need a lot of babysitting, and
that confines them pretty much to lab applications.

7.10.2 House-Trained Pockels Cells: Resonant and Longitudinal

Many applications of modulators are relatively narrowband, so that we can stick the cell
in an electrical resonator to reduce the required voltage by a factor of Q. Cells like that
are available from 100 kHz up past 30 GHz, with operating voltages of 6–30 V.

Transverse cells tend to be long and thin because we win by a factor of L/d, which
allows operating voltages down to the tens-of-volts range, a much better match to ordinary
circuitry. This leads to higher capacitance, but since the electrical power goes as CV 2,
we win anyway, and traveling-wave structures can be used to make the device look
resistive when that becomes a problem.† The most serious limitation is their very small
étendue. Even for light going right down the axis, the beam often has to be so small
in diameter that diffraction limits the length of the cell. This is an especially serious
limitation in the infrared, where diffraction is worse and more retardation is required
to get a half-wave shift. Transverse modulators are most commonly found in integrated
optics and fiber-coupled applications, where they are entirely practical; a single-mode
waveguide made of electro-optic material needs very little étendue, the field confinement
of the waveguide avoids any length limitation due to diffraction, and nonuniformity
causes fewer problems since only one mode is involved. The really fast traveling-wave
integrated-optic Pockels cells used for telecom usually need about 100–200 mW of RF
power and have rise times as short as 12 ps or so. Telecom modulators are usually zero
chirp, that is, they produce little or no phase modulation, which otherwise shows up as
spurious FM sidebands. Chirp is one of the main limitations of directly modulated diode
lasers, so this matters. If you really need fast beam modulation, consider using one of
these and expanding the beam later.

7.10.3 Liquid Crystal

Another class of electro-optic devices is based on liquid crystals (LCs). These odd mate-
rials are liquids made of large molecules, which show some large scale orientation effects
even in the liquid state. The physics of liquid crystals is very rich (read complicated).
A very slightly grooved surface (e.g., glass that has been wiped in one direction with a
cloth pad) can determine the orientation for fixed applications such as wave plates; an
applied voltage can change their alignment, which changes the resulting birefringence.
Because they rely on the physical motion of molecules, rather than electrons, all liquid
crystal modulators are slow (1 μs to 1 ms). You use them like big, slow, low voltage
Pockels cells, to modulate polarization, phase, or amplitude.

†Think of coaxial cable, which is 100 pF/m, but can handle gigahertz signals over many meters because of its
traveling-wave character.
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They come in two basic types: the extremely slow, continuously variable nematic
ones, and the somewhat-faster, binary ferroelectric ones. One of the best things about
LC devices is their huge étendue; you can get 100 mm diameters with � ≈ 0.5 sr. They
are also nearly indestructible—their damage thresholds are so high they’re not easy to
measure.† Being liquids, they make intimate contact with the electrodes; because their
birefringence is so high, they can be very thin. This makes it easy to build spatially
addressable LC spatial light modulators (SLMs). Besides the familiar LCD displays,
SLMs are used to make shutters, masks, and low resolution computer-generated holo-
grams, among other things.

Example 7.2: Phase Flopping Interferometers. One especially good use of LC mod-
ulators is in making zero-background imaging measurements by inverting the phase of
the signal but not the background, and frame subtracting. For example, many years ago a
colleague of the author’s, T. G. Van Kessel, built a very successful Nomarski interference
system for measuring the latent image in photoresist. (The image is latent between expo-
sure and development.) It was a normal Nomarski-type metallurgical microscope (see
Example 10.2) with the addition of an early liquid crystal variable wave plate before the
analyzer, oriented parallel to the Nomarski axis (45◦ to the analyzer axis). Changing the
retardation from 0 to λ/2 on alternate video frames caused a π relative phase shift in
the combined beams; this inverted the Nomarski contrast but preserved the background
amplitude. Under frame subtraction, the weak phase contrast signals added and the strong
background canceled out, making an electronically zero background measurement (see
Section 10.8).

7.10.4 Acousto-optic Cells

The most common Bragg grating in bulk optics is the acousto-optic Bragg cell. We
encounter the piezo-optic effect in Section 8.5.6, where it causes stress birefringence
in lenses and prisms. Launching a strong acoustic plane wave in a material with a big
piezo-optic coefficient makes a moving Bragg grating. Typical frequencies are 40 MHz to
2 GHz, which produce acoustic wavelengths of 2–100 μm. If the interaction zone is too
skinny, phase matching perpendicular to kA is no longer a constraint, so we get many
weak diffraction orders, spaced at multiples of kA. This is the Raman–Nath regime,
shown in Figure 7.14.

That grating has some unique properties: the diffracted light gets frequency-shifted by
±fA depending on which direction it was diffracted. Also, the diffraction efficiency can
be smoothly varied from 0% to 80% or so merely by changing the RF power from 0 to
a watt or two (and more than that for some materials, e.g., glass).

The phase matching condition can be modified (and sometimes considerably relaxed)
by using a birefringent material. By a suitable choice of cut, the change in kdiff with
incidence angle or grating period can be compensated by that due to the change of n.
This trick is used all the time in acousto-optic devices.

Acoustic waves in solids are tensor waves, which include scalar (longitudinal) and
vector (transverse) waves, but more general shear waves can propagate too. Predicting
the effects of a given order and type of diffraction can be done by classical field theory,
but it is far easier and less blunder-prone to take a simplistic quantum view. We know

†That doesn’t apply to the film polarizers on LC shutters, however.
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Figure 7.14. Acousto-optic cells: Raman–Nath and Bragg regimes.

that a photon has energy, momentum, and angular momentum; well, so do phonons,
and they are all conserved during the interaction, on a quantum-by-quantum basis. A
photon that absorbs a phonon (the + or anti-Stokes branch) gets its frequency upshifted
(E = �ω), and is bent along the acoustic propagation direction (p = �k)—the energies
and momenta add. If instead it emits one (by stimulated emission, the − or Stokes
branch), it’s downshifted and bent away from kacoustic. Similarly, conservation of angular
momentum means that a linearly polarized photon that absorbs or emits a shear phonon
has its polarization shifted—it goes from s to p or p to s. A second-order diffraction
gets twice the shift in each, because it involves emitting or absorbing two phonons, and
so on.

Acousto-optic cells are usually used with laser beams, because their aperture is so
small; the major use is as medium-speed amplitude modulators (DC to 10 MHz easily,
DC to 100 MHz if you really work at it—focused beams, fast materials, small crystals).
One exception is the acousto-optic tunable filter (AOTF), which achieves a wide field
angle (and hence a decent étendue) by noncritical phase matching , where the curve of
λ versus the phase-matched θi has a maximum, so the phase matching error is quadratic
in �θi . These are available in both collinear and noncollinear designs. Narrowness of
the passband requires more waves of interaction zone, as we saw, so the angular accep-
tance goes down as the selectivity goes up; a typical cell with �ν/ν = 0.2% works
over ±5◦ (� = 0.023 sr), a much wider range than a grating instrument with the same
resolution.

You can image through AOTFs, but it doesn’t work very well unless you’re careful.
The images are corrupted by ghosts and prism aberrations, and the ultimate spectral
selectivity is limited by a high background light level. Both of these problems are caused
by sinc function sidelobes due to a finite interaction length and the random phase matching
of all the light and acoustic energy bouncing around inside the crystal. Putting two in a
row is an effective but pricey solution to the ghost problem, and putting the AOTF at an
image instead of a pupil pretty well solves the aberration problem too.†

7.10.5 AO Deflectors

The same crystal-cutting tricks allow a reasonable range of output angles (±2–3◦) for
a 1-octave frequency shift, making a narrow-range but very fast scanner with high

†Dennis R. Suhre et al., Telecentric confocal optics for aberration correction of acousto-optical tunable filters.
Appl. Optics 43(6), 1255–1260 (February 20, 2004).
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diffraction efficiency, the acousto-optic deflector (AOD). In this case, we want θi to
be constant over a wide range of acoustic frequency, a condition called tangential phase
matching that can be met in TeO2.

There are interesting tricks you can do with AODs. If you gently focus a beam at the
center of an AOD, it will pivot about its focus with f . Recollimating produces a beam
that moves from side to side without steering, which is very useful for long path sensors
such as the extinction system of Section 10.8.3. Galvos work for this too, of course, but
since an AOD has no moving parts, you can get a much higher scan frequency, with
zero jitter and wobble.

Getting high resolution out of an AOD requires lots of fringes, just like any other
Bragg grating; the number of resolvable spots is equal to the transit time–bandwidth
product. Like Rayleigh and Sparrow resolution criteria, there’s a factor of order 1 in
front that we can argue about, depending on your beam profile and how much overlap
you allow between distinct spots.

Aside: Acoustic Phase Delay. Bragg cells are often used in heterodyne interferom-
eters, and it is sometimes important to remember that the acoustic propagation delay
translates into a huge phase shift. This acoustic phase shift gets impressed on the optical
phase, and so appears in the phase data. It is often far from negligible; if you’re using two
passes through an 80 MHz cell that 200λ delay has a phase sensitivity of 31 rad/MHz.
This is a nuisance in wide-range AOD measurements, or where it makes the oscillator
spurs show up in the data, but in fixed-frequency applications it can be useful—you
can stabilize the operating point of your system by using feedback to adjust the acoustic
frequency. Shear-wave TeO2 devices are the best overall in the visible. Optics people
used to birefringent materials with (δn)/n of a percent or less are usually surprised that
the slow shear wave in TeO2 goes at 600 m/s while the longitudinal wave goes at 4200.
A really big TeO2 cell can have 1000 resolvable spots in a single pass, though several
hundred is more typical.

While they’re the best of the fast bulk-optics modulators, AO cells have some major
drawbacks. Cells with small Bragg angles (longitudinal devices at lowish frequency) have
severe etalon fringes. AODs are less prone to these, because of the high angles, high
diffraction efficiency, and polarization shift. There is also usually some beam apodization
due to acoustic nonuniformity, and ripples in the diffraction efficiency in space and
frequency due to acoustic standing waves. The standing wave effect is eliminated in
shear wave devices by cutting the bottom of the cell at 5◦; because of the huge �v, this
totally destroys the phase matching between the reflected acoustic wave and the light.

Some people say that AO cells have poor wavefront fidelity, but the author has never
had a moment’s problem with it. Scanning rapidly does introduce aberrations however.
It takes some time for the wave to cross the beam, so a frequency ramp produces
astigmatism by sending rays at different x in different directions; a frequency staircase
with time allowed for settling avoids this problem. The polarization eigenstates of a shear
wave cell are also very slightly elliptical, which one occasionally needs to remember.
Overall, a slow shear wave AOD is a pretty trouble-free device.

7.10.6 Photoelastic Modulators

Besides a change in refractive index, the acousto-optic effect also induces stress birefrin-
gence in the crystal. Normally we don’t worry too much about this, especially with TeO2
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devices, where the incoming beam has to be polarized in the right direction to get good
performance. Photoelastic modulators are acousto-optic devices that exploit this effect.
The basic idea is to run an AO cell at a very low frequency, 20–100 kHz, so that the
acoustic transducer basically just shakes the entire crystal back and forth, and tune the
frequency to the lowest order longitudinal vibration mode of the crystal—just like an
organ pipe. The acousto-optic effect leads to a more or less uniform phase modulation,
but the stress birefringence (the photoelastic effect) basically turns the crystal into an
oscillating wave plate, whose retardation can reach ± 1

2 wave. Photoelastic modulators
thus act a bit like acoustic Pockels cells, only much slower. Their big advantage is greater
uniformity of the birefringence across their field.

7.10.7 Acousto-optic Laser Isolators

The acousto-optic effect is symmetrical, so reflected light propagating backwards along
the beam will be diffracted back into the laser. The returned first-order beam enters the
cell at f ± fA from its first pass, and winds up at f ± 2fA, because the sign of the optical
k vector has changed. The frequency shift is so small that the difference in deflection
angle is negligible, and the light goes straight back into the laser.

The laser is a Fabry–Perot resonator, though, and provided facoustic has been properly
chosen, and the cavity finesse is high (as in gas lasers), virtually none of that light will
make it back into the laser cavity to cause feedback problems. Even with diode lasers,
where the finesse is low, and a lot of the light does make it into the cavity, the beat
frequency 2fA is so much higher than the ∼100 kHz of mode hops that its effect is much
reduced. (Why doesn’t this work with the zero-order beam?)


