NAXIMN

Maxim > App Notes > 1-Wire® Devices Temperature Sensors and Thermal Management

Keywords: DS18S20, DS18B20, DS1822 1-wire, 1 wire, 1-Wire, temperature sensors, digital temperature sensors, temperature sensor IC, Mar 08, 2002
microcontrollers, micro-controllers

Interfacing the DS18X20/DS1822 1-Wire® temperature sensor in a microcontroller
environment

Abstract: This application introduces the user to simple 1-Wire software for interfacing a microcontroller to the DS18B20, DS18S20, and DS1822
1-Wire temperature sensors. For example purposes in the article, the DS5000 (8051 compatible) microcontroller is used. Software examples are
given that illustrate the implementation of delay, reset, read bit, write bit, read byte, write byte, ROM search, CRC, read temperature, and read
scratch pad routines.

Introduction

There are several methods available for interfacing 1-Wire devices such as the DS18B20, DS18S20, or DS1822 to a microcontroller. These
methods range from simple software solutions, to using a Serial Interface chip such as the DS24808B, to incorporating Maxim's VHDL 1-Wire Master
Controller in a custom ASIC. This article introduces the user to the simplest possible software solution for basic 1-Wire communication between a
microcontroller and any number of DS18x20 or DS1822 temperature sensors.

Detailed timing and operational information for the DS18B20, DS18S20 and DS1822 is available in their respective datasheets, which can be
obtained from the Maxim website.

Hardware configuration

The block diagram in Figure 1 illustrates the simplicity of the hardware configuration when using multiple 1-Wire temperature sensors. A single-
wire bus provides both communication access and power to all devices. Power to the bus is provided through the 4.7kQ pullup resistor from a 3V to
5.5V supply rail. An almost unlimited number of 1-Wire devices can be connected to the bus because each device has a unique 64-bit ROM code
identifier.

IV TO 5.5V
HOST * Fy F ry
MICROCONTROLLER
¥ i J T
=.. -
1-Wire 1-Wire P otwie f
TEMP TEMP - TEMP E
SEMEOR SENSOR E SENSOR ¥
o]
1 2 ! N
;I EnsmEni ennmnand

Figure 1. Host microcontroller interface.

Interface timing

Communication with the DS18x20/DS1822 is achieved through the use of "time slots"”, which allow data to be transmitted over the 1-Wire bus.
Every communication cycle begins with a reset pulse from the microcontroller followed by a presence pulse from the DS18x20/DS1822 as shown in
Figure 2.

A write time slot is initiated when the bus master pulls the 1-Wire bus from logic high (inactive) to logic low. All write time slots must be 60us to
120ps in duration with a 1ps minimum recovery time between cycles. Write "0" and write "1" time slots are illustrated in Figure 3. During the
write "0" time slot, the host microcontroller pulls the line low for the duration of the time slot. However, during the write "1" time slot, the
microcontroller pulls the line low and then releases the line within 15us after the start of the time slot.

A read time slot is initiated when the microcontroller pulls the bus low for 1us then releases it so the DS18x20/DS1822 can take control of the line
and present valid data (high or low). All read time slots must be 60us to 120ps in duration with a minimum 1us recovery time between cycles (see
Figure 3).

Page 1 of 15

http://www.maxim-ic.com/
http://www.maxim-ic.com/
http://www.maxim-ic.com/appnotes10.cfm
http://www.maxim-ic.com/appnotes10.cfm/ac_pk/1/ln/en
http://www.maxim-ic.com/appnotes10.cfm/ac_pk/24/ln/en
http://www.maxim-ic.com/DS18B20
http://www.maxim-ic.com/DS18S20
http://www.maxim-ic.com/DS1822

480us MINIMURM - ——— DS18x20/D51822

MICROCONTROLLER t—15ps TO B0us—| 4— FPRESENCE PULSE
RESET PIULSE B0us TO 240us
1-Wire BUS
[| S

Figure 2. Reset pulse and presence pulse.

LINE TYPE LEGEND {FIGURE 2 AMD FIGURE 3)
I CUS MASTER PULLIMG LOW WS DS18x20/DS1822 PULLING LOW

RESISTOR PULLUP

START START
OF SLOT QOF 5LOT

WRITE “0” SLOT WRITE “1” SLOT

+— s <TReg ==

—
G0ps = Ty 0" = 120ps -
+— = ps

Vey
1-Wire BUS
GHD

DS18x20VDS1822 SAMPLES DS18x20/D51822 SAMPLES

MIN ™P A MM TP L
4+ qS5us % 1Sus |E— A= —* 4+ 15us -+ 15us —hlq— Ay —
READ “0" SLOT READ “1” SLOT
_"'| +— s <Tpgp <=

Vey S
1-Wire BUS
GMDO e e

= 1us

MASTER SAMPLES >Tus — l‘_.ﬂ<7 MASTER SAMPLES
15ps +~47 458 4% I.._ 15us -){

Figure 3. Write and read time slots.

Software control

In order to accurately control the special timing requirements of the 1-Wire interface, certain key functions must first be established. The first
function created must be the "delay" function which is integral to all read and write control. This function is entirely dependent on the speed of the
microcontroller. For the purpose of this article, the DS5000 (8051 compatible) microcontroller is used, which runs at 11.059MHz. The example to
the right illustrates the "C" prototype function for creating the timing delay.

Delay example

/] DELAY - with an 11.059MHz crystal .
/1 Calling the routine takes about 24us, and then
/'l each count takes another 16us.
/1
voi d del ay(int useconds)
{
Page 2 of 15

int s;
for (s=0; s<useconds;s++);

}

Since each communication cycle must begin with a reset from the microcontroller, the "reset" function is the next most important function to be
implemented. The reset time slot is 480us. By setting a delay of "3", followed by "25" (see the example below), the reset pulse will last for the
required duration. Following the reset, the microcontroller must release so the DS18x20/DS1822 can indicate its “"presence" by pulling the line low.
Note that if multiple temperature sensors are on the bus, they will all respond simultaneously with a presence pulse.

Reset example

NN NN
// OWRESET - perforns a reset on the one-wire bus and

/'l returns the presence detect. Reset is 480us, so del ay

/1 value is (480-24)/16 = 28.5 - we use 29. Presence checked

/'l another 70us later, so delay is (70-24)/16 = 2.875 - we use 3.

unsi gned char ow_reset (void)

{

unsi gned char presence;

DQ=0; //pull DQIline Iow

delay(29); // leave it low for 480us
DQ=1; // allowline to return high
delay(3); // wait for presence
presence = DQ // get presence signal
delay(25); // wait for end of tineslot
return(presence); // presence signal returned
} /1 O=presence, 1 = no part

The read and write function code segments shown in the following four examples provide the basic structure needed for all data bit and data byte
read and write operations.

Read bit example

NN NN
// READ BIT - reads a bit fromthe one-wire bus. The del ay

/'l required for a read is 15us, so the DELAY routine won't work.
/1 We put our own delay function in this routine in the formof a
/1 for() |oop.

/1

unsi gned char read_bit(void)

{

unsi gned char i;

DQ=0; // pull DQlowto start tineslot

DQ = 1; // then return high

for (i=0; i<3; i++); // delay 15us fromstart of tineslot
return(DQ; // return value of DQline

}
Write bit example

TEEETEEEEET i i i i
/I WRITE BIT - wites a bit to the one-wire bus, passed in bitval.

Il

void wite_bit(char bitval)

{

DQ=0; // pull DQlowto start timeslot

if(bitval==1) DQ =1; // return DQ high if wite 1

del ay(5); // hold value for remainder of tinmnesl|ot

DQ = 1;

}/ 1 Delay provides 16us per |oop, plus 24us. Therefore delay(5) = 104us

Read byte example

TEEETEEEEETEE i i rrrrd
/'l READ_BYTE - reads a byte fromthe one-wre bus.
/1
unsi gned char read_byte(void)
{
unsi gned char i;
unsi gned char value = 0;
for (i=0;i<8;i++)
{
Page 3 of 15

if(read_bit()) value| =0x01<<i; // reads byte in, one byte at a tinme and then
/1 shifts it left
delay(6); // wait for rest of tineslot

return(val ue);

}
Write byte example

TILITIEEEE i
/1 WRITE_BYTE - wites a byte to the one-wire bus.

I

void wite_byte(char val)

{

unsi gned char i;

unsi gned char tenp;

for (i=0; i<8; i++) // wites byte, one bit at a tine
{

temp = val >>i; // shifts val right 'i' spaces

temp & 0x01; // copy that bit to tenp
wite_bit(tenp); // wite bit in tenp into

}
del ay(5);

The search ROM algorithm

To take full advantage of the 1-Wire net concept, the microcontroller must be able to communicate with any number of devices connected to the
net. In order to do this, the microcontroller must learn the unique 64-bit ROM identification code for each device on the bus using the "Search
ROM" algorithm illustrated in Figure 4. The example following Figure 4 explains a Search ROM routine for a bus with four slave devices. Sample
code for a Search ROM routine is also shown. Once all the ROM codes have been identified, the "Match ROM" command can be used to

communicate with any specific device on the net.

Page 4 of 15

SEARCH ROM ALGORITHM

NEXT |

FIRST

SET RETURN WALUE T FALSE (0} |4—
¥

SET LAST DISCREPANCY TO
“0" AMD CLEAR DOME BIT

PN

1S DONE ™. YES

FLAG SI:_I'?fﬂ’
\ Mo
¥
|5END REST SIGMAL ON 1-Wire BUS |

A\
/:"JHESENCE

P CLEAR DOME FLAG

¥ YES

SET ROM BIT INDEX. TO 1

I
SET DISCREPANCY MARKER TO “0"
I

SEND SEARCH COMMAND (FO)
OM 1-Wire BUS
|

+| READ BIT "A” FROM 1-Wire BUS

READ BIT "B" FROM 1-Wire BUS

SN

h A

BIT "A” - YES

SET LAST DISCREFPAMCY TO ™07

SETUP

INITIALIZE 1-Wire BUS

INITIALIZE LAST
DISCREPANCY TO "0°

CLEAR DOME FLAG

N

e

BIT "A™ =
BIT"B"=

*f

[SET ROM BIT INDEX, TO "A

| \il:_l' ROM BIT INDEX TO *1° l

SEND BIT INDEX TO 1-Wire BUS

44— SET DISCREPANCY MARKER

I
INCREMENT ROM BIT INDEX T

TO ROM BIT INDEX

SET ROM BIT IMDEX TO "07

N

et

YES I/J ROM EII';?\.

X

RS

e

-

IS ROM BIT/ES
INDEX = 647

MO

SET DISCREPANCY TO
DISCREPANCY MARKER

12 LAST

NS

"y

|

YES

—R\DISEREPHNC:I'/')—. SET DOME FLAG
=07

'{DEJ{ = /
“Yho

MO

SET RETURN YALUE TO TRUE (1)

RETURMN
—b-(ROM CODE

Figure 4. Search ROM algorithm.

Page 5 of 15

ROM search example

During the ROM search process, the bus master must repeat a simple three-step routine: 1) read a ROM code bit from the slave devices, 2) read
the complement of the bit, 3) write the selected value for that bit. The bus master must perform this three-step routine 64 times—once for each
ROM code bit. After one complete pass, the bus master will know the ROM code for one slave device on the bus. The remaining devices and their
ROM codes can be identified though additional passes.

The ROM Search process is illustrated by the following example that assumes four different devices are connected to the same 1-Wire bus. The
ROM codes of the four devices are as shown:

ROM1 00110101...
ROM2 10101010...
ROM3 11110101...
ROM4 00010001...

The search process goes as follows:

10.
11.

12.

13.
14.

15.
16.

17.

18.

The bus master begins the initialization sequence by issuing a reset pulse. The slave devices respond by issuing simultaneous presence
pulses.

The bus master then issues the Search ROM command on the 1-Wire bus.

Each device will respond to the Search ROM command by placing the value of the first bit of their respective ROM codes onto the 1-Wire
bus. The master will then read the bus value. In this case, ROM1 and ROM4 will place a O onto the 1-Wire bus, i.e., they will pull it low.
ROM2 and ROM3 will place a 1 onto the 1-Wire bus by allowing the line to stay high. The result is the logical AND of all devices on the line;
therefore, the bus master will read a 0. All of the devices on the 1-Wire bus will respond to this read by placing the complement of the first
bit of their ROM codes onto the 1-Wire bus: ROM1 and ROM4 will place a 1 onto the 1-Wire bus, allowing the line to stay high, and ROM2
and ROM3 will place a O onto the bus, pulling it low. The bus master will now read the bus again and will again read a O.

Depending on the slave device ROM codes, there are four possible data combinations that the bus master can obtain from the two reads.
These combinations can be interpreted as follows:

00 There are devices connected to the bus which have conflicting bits in the current ROM code bit position.
01 All devices connected to the bus have a O in this bit position.

10 All devices connected to the bus have a 1 in this bit position.

11 There are no devices connected to the 1-Wire bus.

In this example, bus master has read a 0 during each read, which tells it that there are some devices on the 1-Wire bus that have a O in
the first ROM code position and others that have a 1.

In response to the previous data, the bus master writes a 0 onto the bus. This deselects ROM2 and ROM3 for the remainder of this search
pass, leaving only ROM1 and ROM4 "connected" to the 1-Wire bus.

The bus master performs two more reads and receives a O followed by a 1. This indicates that all devices still connected to the bus have Os
as their second ROM data bit.

The bus master then writes a O to keep both ROM1 and ROM4 connected to the bus.

The bus master again executes two reads and receives two 0s. This indicates to the master that one of the devices on the 1-Wire bus has a
0 in the third ROM code position and the other has a 1.

The bus master writes a 0 onto the bus, which deselects ROM1 and leaves ROM4 as the only device still connected.

The bus master reads the remainder of the ROM bits from ROM4 and continues to access the ROM4 device if desired. This completes the
first ROM search pass; the bus master has now uniquely identified one slave (ROM4) on the 1-Wire bus by learning its ROM code.

The bus master starts a new ROM search sequence by repeating steps 1 through 7.

The bus master now writes a 1 onto the bus (instead of a 0, as was done in step 8). This decouples ROM4, leaving only ROML1 still
connected.

The bus master now reads the remainder of the ROM bits from ROM1 and can communicate with the ROM1 device if desired. This
completes the second ROM search pass, and the master has now identified another slave device (ROM1).

The bus master starts a new ROM search by repeating steps 1 through 3.

The bus master now writes a 1 onto the bus (instead of a 0, as was done in step 4). This deselects ROM1 and ROM4 for the remainder of
this search pass, leaving only ROM2 and ROM3 coupled to the bus.

The bus master executes two reads and receives two 0s.
The bus master writes a 0 onto the bus, which decouples ROM3, leaving only ROM2 connected to the bus.

The bus master reads the remainder of the ROM bits from ROM2 and communicates with the ROM2 device if desired. This completes the
third ROM search pass, and the master has now identified the ROM2 slave device.

The bus master starts a fourth and final ROM search by repeating steps 13 through 15.

Page 6 of 15

19. The bus master writes a 1 onto the bus (instead of a 0, as was done in step 16), which decouples ROM2, leaving only ROM3 connected to
the bus.

20. The bus master reads the remainder of the ROM bits from ROM3 and communicates with the ROM3 device if desired. This completes the
fourth ROM search pass, during which the master identified the ROM3 device. At this point the master has identified all the slave devices
on the bus, and from this point on the bus master can individually address any of the devices using their ROM codes.

Note: The bus master learns the unique ROM code of one 1-Wire device during each ROM search pass. The time required to learn one ROM code is:
960us + (8 + 3 x 64) 61ps = 13.16m

The bus master is therefore capable of identifying 75 different 1-Wire slave devices per second.

Search ROM code examples

As shown in the prototype function below, the "Find Devices" function begins with a 1-Wire reset to determine if any devices are on the net, and if
so, to wake them up. The "First" function is then called, to keep track of the discrepancy bits and return to "Next", which finds each unique device
on the net.

The "Next" function is quite extensive and does most of the work in finding each unique 64-bit ROM code identifier for each device on the net.

/1 FI ND DEVI CES

voi d Fi ndDevi ces(voi d)

{

unsi gned char m

if(lowreset()) //Begins when a presence is detected

if(First()) //Begins when at |east one part is found

nunROVs=0;

do

{

numROVE ++;

f or (m=0; NK8; m++)

{

FoundROM nunROMs] [m{ =ROM nmi; //Identifies ROM

\\ nunber on found device

} printf("\nROM CODE =%02X%02X%02X%02X\ n",

FoundROM 5] [7], FoundROM 5] [6] , FoundROM 5] [5] , FoundROM 5] [4] ,
FoundROM 5] [3] , FoundROM 5] [2] , FoundROM 5] [1] , FoundROM 5] [0]) ;
}while (Next ()& nunROME<10)); //Continues until no additional devices are found
}

}

}

/'l FIRST

/1 The First function resets the current state of a ROM search and calls
/1 Next to find the first device on the 1-Wre bus.

/1

unsi gned char First(void)

{

lastDiscrep = 0; // reset the romsearch | ast discrepancy gl obal

doneFl ag = FALSE;

return Next(); // call Next and return its return val ue

}

/'l NEXT

/'l The Next function searches for the next device on the 1-Wre bus. If
/'l there are no nore devices on the 1-Wre then false is returned.

/1

unsi gned char Next (voi d)

{

unsi gned char
unsi gned char
unsi gned char
unsi gned char 0;

unsi gned char discrepMarker = 0; // discrepancy narker
unsi gned char g; // Qutput bit

unsi gned char nxt; // return val ue

int flag;

nxt = FALSE; // set the next flag to false

dowcrc = 0; // reset the dowcrc

flag = owreset(); // reset the 1-Wre
if(flag||doneFlag) // no parts -> return fal se

1; // ROM Bit index
0; // ROM Byte index
1; // bit mask

X x5 3

Page 7 of 15

lastDiscrep = 0; // reset the search

return FALSE;

}

write_byte(OxF0); // send Sear chROM command

do

/1 for all eight bytes

{

X = 0;

if(read_bit()==1) x = 2;

del ay(6);

if(read_bit()==1) x |=1; // and its conpl enent
if(x ==3) // there are no devices on the 1-Wre
br eak;

el se

if(x>0) // all devices coupled have 0 or 1
g = x>>1; // bit wite value for search

el se

{

/1 if this discrepancy is before the |ast
/] discrepancy on a previous Next then pick
/'l the sane as last tine

i f(nxl ast Di screp)

g = ((ROM n] &) >0) ;

else // if equal to last pick 1

g = (nme=lastDiscrep); // if not then pick 0
/1 if 0 was picked then record

/1 position with mask k

if (g==0) discrepMarker = m

}

if(g==1) // isolate bit in ROMn] with nmask k
ROMn] | = k;

el se

ROM n] &= ~k;

wite_bit(g); // ROMsearch wite

m++; // increnent bit counter m

k = k<<1; // and shift the bit mask k
if(k==0) // if the mask is 0 then go to new ROM
{ // byte n and reset mask

ow crc(ROMn]); // accumulate the CRC

n++; k++;

}

}

}while(n<8); //loop until through all ROM bytes 0-7
i f(nmx65||dowcrc) // if search was unsuccessful then
| ast Di screp=0; // reset the last discrepancy to 0
el se

{

/'l search was successful, so set lastDi screp,

/1 lastOne, nxt

| ast Di screp = di screpMarker;

doneFl ag = (Il ast Di screp==0);

nxt = TRUE;, // indicates search is not conplete yet, nore
/] parts remain

}

return nxt;

}
Performing a cyclic redundancy check

A cyclic redundancy check (CRC) can be accomplished using the functions shown below and should be included when performing the Search ROM
function.

TEEETTEEET T b irrrrd
/1 ONE WRE CRC

I

unsi gned char ow_crc(unsigned char x)

{

dowcrc = dscrc_tabl e[dowcr c”x] ;

return dowcrc;

}

#define FALSE O
#define TRUE 1
I NNy,

Page 8 of 15

/1 GLOBAL VARI ABLES

I

unsi gned char ROM8]; // ROMBIt

unsi gned char |astDiscrep = 0; // last discrepancy

unsi gned char doneFlag = 0; // Done flag

unsi gned char FoundROM 5][8]; // table of found ROM codes

unsi gned char nunROVE;

unsi gned char dowcrc

unsi gned char code dscrc_table[] = {

0, 94,188,226, 97, 63,221,131, 194, 156, 126, 32, 163, 253, 31, 65
157,195, 33, 127,252,162, 64, 30, 95, 1,227,189, 62, 96,130, 220,
35,125, 159, 193, 66, 28, 254, 160, 225, 191, 93, 3,128,222, 60, 98
190, 224, 2, 92,223,129, 99, 61,124, 34,192,158, 29, 67,161, 255
70, 24,250, 164, 39,121, 155, 197, 132, 218, 56, 102, 229, 187, 89, 7
219, 133, 103, 57,186,228, 6, 88, 25, 71,165, 251, 120, 38, 196, 154,
101, 59,217,135, 4, 90,184, 230, 167,249, 27, 69,198,152,122, 36
248,166, 68, 26,153,199, 37,123, 58, 100, 134, 216, 91, 5,231, 185
140, 210, 48, 110,237,179, 81, 15, 78, 16,242,172, 47,113, 147, 205
17, 79,173,243,112, 46,204, 146, 211, 141, 111, 49,178, 236, 14, 80,
175,241, 19, 77,206, 144,114, 44,109, 51,209, 143, 12, 82,176, 238
50, 108, 142, 208, 83, 13,239, 177,240,174, 76, 18,145,207, 45,115
202, 148,118, 40,171, 245, 23, 73, 8, 86,180,234, 105, 55,213, 139
87, 9,235,181, 54,104,138, 212, 149, 203, 41, 119, 244,170, 72, 22
233,183, 85, 11,136,214, 52,106, 43,117,151, 201, 74, 20, 246, 168,
116, 42,200,150, 21, 75,169, 247,182,232, 10, 84, 215,137,107, 53};

Reading device temperature

If there is a single device on the net, then the "Read Temperature" function can be used directly as shown below. However, if multiple devices are
on the net, in order to avoid data collisions, the "Match ROM" function must be used to select a specific device.

The code example below was written specifically for use with the DS18S20 temperature sensor. To use this code with the DS18B20 or DS1822, it
must be modified slightly due to differences in the temperature register format. Refer to the respective datasheet for temperature register format
information.

voi d Read_Tenper at ure(voi d)

{

char get[10];

char tenp_l sh, tenp_nsb;

int k;

char tenp_f,tenp_c;

ow_reset();

wite_byte(OxCCO; //Skip ROM

wite_byte(0x44); // Start Conversion

del ay(5);

ow reset();

write_byte(OxCC); // Skip ROM

write byte(OxBE); // Read Scratch Pad

for (k=0; k<9; k++) {get[k] =read_byte();}

printf("\'n Scrat chPAD DATA = 9X%X¥X%X%X\ n", get[8],get[7],get[6],get[5],get[4],get[3],get[2],get[1],get[0]);
tenp_nmsb = get[1]; // Sign byte + Isbhit

tenp_lsb = get[0]; // Tenp data plus Isb

if (temp_nsb <= 0x80){tenp_lsb = (tenp_Isb/2);} // shift to get whol e degree
tenp_nmsb = tenp_nsb & 0x80; // mask all but the sign bit

if (temp_nsb >= 0x80) {tenp_lsb = (~tenp_lsb)+1;} // twos conpl enent

if (temp_nsb >= 0x80) {tenp_lsb (tenp_lsb/2);}// shift to get whol e degree
if (temp_nsb >= 0x80) {tenp_lsb ((-1)*tenp_Isb);} // add sign bit

printf("\nTempC= % degrees CQ\n", (int)tenp_Isb); // print tenp. C

tenp_c tenp_l sb; // ready for conversion to Fahrenheit

tenp_f (((int)tenp_c)* 9)/5 + 32;

printf("\nTenpF= % degrees F\n", (int)tenp_f); // print tenp. F

}

Reading the scratch pad memory

The Scratch Pad memory provides the user with all the necessary device data including temperature, TH and TL programmable thermometer
settings, as well as the Count Remain and Count Per C data used in fractional temperature measurements. The CRC byte is also included in Scratch
Pad memory.

voi d Read_Scrat chPad(voi d)

{

int j;

char pad[10] ;

printf("\nReadi ng ScratchPad Data\n");
write_byte(OxBE);

Page 9 of 15

for (j=0;j<9;j++){pad[j]=read_byte();}
printf("\n ScratchPAD DATA =

IXYXYXIYXYXYX\ n" , pad[8], pad[7], pad[6], pad[5], pad[4], pad[3], pad[2], pad[1], pad[0]) ;

}

The "Read ROM" command is used to find the 64-bit ROM code when only a single device is on the net. Multiple devices require the use of the

"Search ROM" functions.

voi d Read_ROMCode(voi d)

{

int n;

char dat[9];

printf("\nReadi ng ROM Code\n");
ow_reset();

write_byte(0x33);

for (n=0;n<8; n+t+){dat[n] =read_byte();}

printf("\n ROM Code = 9XYX%X9%\ n", dat[7], dat [6], dat[5], dat[4], dat[3],dat[2],dat[1],dat[0]);

}

The "Match ROM" function must provide the 64-bit ROM-ID to select an individual device on the net.

/| Perform Match ROM

I

unsi gned char Send_MNat chRon{ voi d)
{

unsi gned char i;

if(owreset()) return fal se;
write_byte(0x55); // match ROM
for(i=0;i<8;i++)

{

write_byte(FoundROM nunROMs] [i]); //send ROM code
}

return true;

}

Appendix A

DS5000 (8051 source code)

/1 lwiretalk.c -- Functions for the Dallas Sem conductor DS18x20/ DS1822
/'l Two-Wre Tenperature Sensor

/'l Designed for 8051 microcontrollers

/1 This code was devel oped using the DS5000/ DS2251T

/'l Please note that 128K RAM size is required to run this program

/* __ */
/| #pragma CODE SMALL OPTI M ZE(3)

/* command |ine directives */

#i ncl ude <absacc. h> /* absol ute addressi ng nodes */

#i ncl ude <ctype.h> /* character types */

#include <math.h> /* standard math */

#i nclude <stdio.h> /* standard I/0O */

#include <string.h> /* string functions */

#i ncl ude <ds50001w. h> /* DS5000 series 8052 registers */

/* __ */
/* Configuration paraneters */
/* __ */

#define Xtal Freq (11059490) /* nmmin crystal frequency */
#define CntrFreq (Xtal Freq/12) /* main counter frequency */
#define BaudRate (9600) /* baud rate */

#define CntrTine (8) /* nunber of cycles for counter */
#define Ft (32768.0) /* target crystal frequency */

/* __ */
/* __ */
LEEEEEEEEEEEr i1/ BEG N MAEN PROGRAMY /1T ETEETEL LTy
mai n()

{/

K e e e e e e o e e e e e e e e e e e m e e e e e e e e m e e e m m e m e e e m m e m — m e — — —m e — - */
/* Local variables */
/2 * [
unsi gned char Sel ect_Type; /* Function variable */
/2 * [
/* Start of program execution */

/~k __ ~k/
/* Inhibit the watchdog timer and set up nmenory */

/* __ */

Page 10 of 15

TA = OxAA; /* tinmed access */

TA = 0x55;

PCON = 0x00; /* inhibit watchdog timer */

K o o o e . */
/* Set up the serial port */

/* __ */
SCON = 0x50; /* SCON: npode 1, 8-bit UART, enable rcvr */

0x21; /* TMOD: tiner 1, node 2, 8-bit reload */

/* TMOD: timer O, node 1, 16-bit */

PCON | = 0x80; /* SMOD = 1 Doubl e Baud Rate for THl |oad */
THO=TLO = O;

TH1=TLO = (unsigned int)(256 - ((Xtal Freq / BaudRate) / 192));
TRO = 1; /* TRO: timer O run */

TR1 = 1; /* TRL: tiner 1 run */

TI =1; /* Tl: set Tl to send first char of UART */

printf ("\n");

printf (" Dallas Sem conductor - Systens Extension\n");

printf (" Source for DS1820 Tenperature Readi ng and\n");

printf (" Search ROM code.\n");

printf (" Updated Code August, 2001 \n");

printf (" [C Program for DS500x or 8051 Conpatible M crocontroller]");
printf("\n\n");

pl'l ntf(”\ n**\ n“) .
’

printf (" Select Menu Option\n");

printf (" 1. One-Wre Reset\n");

printf (" 2. Read ROM Code of Single Device On Net\n");

printf (" 3. Perform Search ROMn");

printf (" 4. Read Scratch PAD\n");

printf (" 5. Read Tenperature\n");

printf (" 6. Find All Devices\n");

printf ("\n\n");

printf (" Note: This programrepresents an exanple only.\n");

printf (" No warranties or technical support is provided with this program\n");
/* __ */
do {

/* __ */
/* Enable CE2 */

/* __ */
EA = 0; /* Inhibit interrupts */

TA = OxAA; /* tinmed access */

TA = 0x55;

MCON = MCON | = 0x04; /* Enable topside CE OxCC */

/* __ */
/* Disable CE2 */

/* __ ~k/
TA = OxAA; /* tinmed access */

TA = 0x55;

MCON = 0xC8; /* Disable topside CE */

EA = 1; /* Enable interrupts */

Sel ect _Type = getchar(); /* get variable to start */

swi t ch(Sel ect _Type)

{

case '1': printf ("\n 1. Sent 1-Wre Reset\n");

ow_reset();

br eak;

case '2': printf (" 2. Read ROM Code of Single Device On Net\n");
ow_reset();

Read_ROMCode() ;

case '3': printf("\n 3. Perform ng Search ROMn");
ow_reset();

First();

printf("\nROM CODE =%02X%02X%02X%02X\ n",

FoundROM 5] [7] , FoundROM 5] [6] , FoundROM 5] [5] , FoundROM 5] [4] ,
FoundROM 5] [3], FoundROV 5] [2] , FoundROM 5] [1] , FoundROM 5] [0]) ;
br eak;

case '4': printf ("\n 4. Read Scratch PAD\n");

ow_reset();

wite_byte(OxCC; // Skip ROM

Read_Scr at chPad() ;

br eak;

case '5': printf ("\n 5. Read Tenperature\n");
Read_Tenperature(); //initiates a tenperature reading

br eak;

case '6': printf ("\n 6. Find All Devices\n");

ow_reset();

Fi ndDevi ces() ;

Page 11 of 15

br eak;

default: printf ("\n Typo: Select Another Menu Option\n");

br eak;

}; /* end swtch*/

} while (1); /* Loop forever */

/* __ */

/* End of program */

Appendix B

DS5000 (8051 C include header file)

DS5000. H
Header file for Dallas Semi conductor DS5000.
Copyright (c) 1995-1996 Keil Software, Inc. Al rights reserved.

#i f ndef DS5000_HEADER FI LE
#def i ne DS5000_HEADER FI LE 1

__ * [
sfr PO = 0x80;

sfr SP = 0x81;

sfr DPL = 0x82;

sfr DPH = 0x83;

sfr PCON = 0x87;

sfr TCON = 0x88;

sfr TMOD = 0x89;

sfr TLO = Ox8A;

sfr TL1 = 0x8B;

sfr THO = 0x8C;

sfr TH1 = 0x8D;

sfr P1 = 0x90;

sfr SCON = 0x98;

sfr SBUF = 0x99;

sfr P2 = OxAOQ;

sfr 1 E = OxA8;

sfr P3 = 0xBO;

sfr I P = 0xBS;

sfr MCON = 0xC§6;

sfr TA = OxC7;

sfr PSW = 0xDO;

sfr ACC = OxEO;

sfr B = OxFO;

| % o e e e e e e e e e e e e e e eeeaaaaaas
DS5000 PO Bit Registers
__ * |
//sbit PO_O = 0Ox80; // Set CQutput Here

shit DQ = 0x80; // Set Qutput Here

shit PO_1 = 0x81;

shit PO_2 = 0x82;

shit PO_3 = 0x83;

shit PO_4 = 0x84;

shit PO_5 = 0x85;

shit PO_6 = 0x86;

shit PO_7 = 0x87;

AN162

17
[[fcccccccocccocccoocococnocncocooooococoocooccooooocooo
DS5000 PCON Bit Val ues
__ *
#define | DL_ Ox01

#define STOP_ 0x02

#define EWI_ Ox04

#define EPFW_0x08

#defi ne WIR_ 0x10

#def i ne PFW_ 0x20

#defi ne POR_ 0x40

#define SMOD_ 0x80

| % o o e e e e e e e e e eeeaaaaaas
DS5000 TCON Bit Registers
__ *
shit 1 TO = 0x88;

shit I E0O = 0x89;

shit 1 T1 = Ox8A;

Page 12 of 15

shi t
shi t
shi t
shi t
shi t

I E1
TRO
TFO
TR1L
TF1

0x8B;
0x8C;
0x8D;
Ox8E;
Ox8F;

TO_MD_ 0x01
TO_ML_ 0x02
TO_CT_ 0x04
TO_GATE_ 0x08
T1_MD_ 0x10
T1_ML_ 0x20
T1_CT_ 0x40
T1_GATE_ 0x80
T1_MASK_ OxFO
TO_MASK_ OxOF

= 0x90;
= 0x91;
= 0x92;
= 0x93;
= 0x94;
= 0x95;
= 0x96;
= 0x97;

Rl = 0x98;
TI = 0x99;
RB8 = 0x9A;
TB8 = 0x9B;
REN = 0x9C;
SM2 = 0x9D;
SML = Ox9E;
SM) = Ox9F;
[[¥coccoccocococccoocoocoooonooc00co0000C000CcD0000000Co00

P2

P2_
P2_
P2_.
P2_
P2_
P2_

0 = OxAOQ;
1 = OxAL;
2 = 0xA2;
3 = OxAS3;
4 = OxA4;
5 = OxA5;
6 = OxA6;
7 = OxA7;

N
L VA | R |

o

3

o]

0P

Page 13 of 15

shit P3_6
shit P3_7
AN162

19

0xB6;
0xB7;

shit PX1
shit PT1
shit PS = 0xBC;

shit RW = OxBF;

n

=3
=
=
—
o

oo

o
x

o}
Lo

#define SL_ 0x01
#define PAA_ 0x02
#define ECE2_ 0x04
#define RA32_8_0x08
#define PAO_ 0x10
#define PA1_ 0x20
#define PA2_ 0x40
#def i ne PA3_ 0x80

shit P = 0xDO;
shit Ov = 0xD2;
shit RS 0xD3;
shit RS
shit FO =
shit AC = 0xDe6;
shit CY =

= O

Interrupt Vectors:

Interrupt Address = (Nunber * 8) + 3
__ */
#define | EO_VECTOR O /* 0x03 */

#define TFO_VECTOR 1 /* 0xO0B */

#define | E1_VECTOR 2 /* 0x13 */

#define TF1_VECTOR 3 /* 0x1B */

#define SI O VECTOR 4 /* 0x23 */

#define PFWVECTOR 5 /* 0x2B */

1-Wire is a registered trademark of Maxim Integrated Products, Inc.

Related Parts
DS1822: QuickView -- Full (PDF) Data Sheet -- Free Samples

DS1822-PAR: QuickView -- Full (PDF) Data Sheet

DS18B20: QuickView -- Full (PDF) Data Sheet -- Free Samples

DS18B20-PAR: QuickView -- Full (PDF) Data Sheet

DS18S20: QuickView -- Full (PDF) Data Sheet -- Free Samples

DS18S20-PAR: QuickView -- Full (PDF) Data Sheet

Automatic Updates
Would you like to be automatically notified when new application notes are published in your areas of interest? Sign up for EE-Mail™.

Application note 162: www.maxim-ic.com/an162

More Information

For technical support: www.maxim-ic.com/support

For samples: www.maxim-ic.com/samples

Other questions and comments: www.maxim-ic.com/contact

AN162, AN 162, APP162, Appnotel62, Appnote 162
Copyright © by Maxim Integrated Products
Page 14 of 15

http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2795/ln/en
http://www.maxim-ic.com/getds.cfm/pk/2795
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=DS1822&ln=en
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2796/ln/en
http://www.maxim-ic.com/getds.cfm/pk/2796
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2812/ln/en
http://www.maxim-ic.com/getds.cfm/pk/2812
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=DS18B20&ln=en
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2813/ln/en
http://www.maxim-ic.com/getds.cfm/pk/2813
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2815/ln/en
http://www.maxim-ic.com/getds.cfm/pk/2815
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=DS18S20&ln=en
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2816/ln/en
http://www.maxim-ic.com/getds.cfm/pk/2816
http://www.maxim-ic.com/ee_mail/home/subscribe.mvp?phase=apn
http://www.maxim-ic.com/an162
http://www.maxim-ic.com/support
http://www.maxim-ic.com/samples
http://www.maxim-ic.com/contact

Additional legal notices: www.maxim-ic.com/legal

Page 15 of 15

http://www.maxim-ic.com/legal

